Frequency of mutations in the \textit{rpoB} gene of multidrug-resistant \textit{Mycobacterium tuberculosis} clinical isolates from Sudan

Haitham Elbir1, Nuha Yousif Ibrahim2

1Department of Microbiology, Tropical Medicine Research Institute, Khartoum, Sudan
2Tuberculosis Reference Laboratory Khartoum, Sudan

\textbf{Key words:} \textit{rpoB}; tuberculosis; TB; Sudan

Multidrug-resistant (MDR) strains of \textit{Mycobacterium tuberculosis} represent an obstacle in tuberculosis control and stress the need for rapid and reliable diagnostic tools for drug susceptibility testing in clinical isolates [1]. Mutations in the 81-bp region of the \textit{rpoB} gene are responsible for resistance to rifampicin, an essential drug for the therapy of tuberculosis (TB) [2]. Mycobacteria laboratory facilities in Sudan exist only in Khartoum state whereas TB patients from other states are referred to Khartoum state for diagnosis and treatment. The MDR-TB prevalence in Sudan was found in 5\% of new cases and 24\% of previously treated patients [3]. Recent development of the Xpert MTB/RIF test [4] and of the line probe assay [5] which span 81-bp fragment of the RNA polymerase beta subunit (\textit{rpoB}) gene have allowed for the rapid detection of resistance to rifampicin (RIF). Knowledge on the geographical distribution of the \textit{rpoB} resistant alleles is essential for the development of diagnostic tools. Although sequence analysis of the \textit{rpoB} gene has been shown to be effective for detecting RIF-resistance alleles in over 90\% of RIF-resistant isolates from different geographical regions [6,7], there is only limited information from Sudan [8]. In order to find Sudan-specific mutations, that could potentially be used for the optimization of the current detection tools of RIF resistance alleles, we determined in this study the mutation profile occurring within an 81-bp fragment of the \textit{rpoB} gene, in a collection of MDR clinical isolates of \textit{Mycobacterium tuberculosis} isolated from Khartoum, Sudan.

Forty-nine clinical isolates consisting of RIF-resistant \textit{M. tuberculosis} were isolated from sputum of TB patients during the period between 2007 and 2009, into the Khartoum state, Sudan. The drug susceptibility testing was performed using standard proportional method and the drugs tested were rifampicin, isoniazid (INH), ethambutol (EMB), and streptomycin (SM) [9].

Genomic DNA was extracted using the boiling method. An 81-bp region of the \textit{rpoB} gene was amplified by polymerase chain reaction (PCR) [10] and DNA sequencing was performed by Macrogen Inc. (Seoul, South Korea) on a ABI3730XL DNA sequencer (Applied Biosystems, Foster City, USA). Water was used as a negative control to replace DNA, to rule out carry-over contamination of the amplicon throughout the steps of the protocol.

We report here the determination of the \textit{rpoB} gene mutation profile in MDR \textit{M. tuberculosis} clinical isolates from the Khartoum state and the comparison with mutation profiles from different countries. The resistance profile and mutations of \textit{rpoB} are listed in Table 1. The mutations observed in this study were at codon 531 (64.1\%), 526 (17.9\%), 516 (7.7\%), 511 (2.6\%) and two isolates (5.1\%) had insertion between codon 514-515. All genetic alterations were caused by single base substitutions, and the most frequent mutation was observed at codon 531 (Ser \Rightarrow Leu 61.5\%). Missense mutations with different frequencies were observed at codon 526 (His \Rightarrow tyr 12.8\%), (His \Rightarrow leu 5.1\%) and (His \Rightarrow cys 2.5\%). Other mutations were at codon 531 (ser \Rightarrow Trp 2.5\%), 516 (asp \Rightarrow val 7.6\%) and two isolates had insertion of Phe. Allele10
contained novel mutation at codon 511 (CTG leu to CCC pro) that has never been previously reported. The sensitivity of rpoB mutations within the 81-bp region for predicting the RIF-resistance of M. tuberculosis is 80%. The new allele sequence has been deposited in GenBank under the accession number KF877732.

A comparison of mutation frequency at codon 531, 526, 516 and 511 was similar to mutation frequency reported from Taiwan, India, Italy and China [11,12,13,14]. Mutations within the 81-bp hot-spot region (codons 507 to 533) account for more than 90% of RIF-resistant M. tuberculosis strains [6,7], but still there was a proportion of strains phenotypically RIF-resistant but lacking mutation within the hot-spot region. Yue et al., 2003 [14] have reported that 10% of phenotypically RIF-resistant M. tuberculosis isolates did not show any mutations at the 81-bp region. According to Adikaram et al., 2012 [15], 41.9% of RIF-resistant M. tuberculosis isolates contained mutation outside the hot-spot region. In the current study, 20% of our isolates contained no mutations within the 81-bp region. This disagreement between phenotypic resistant and genotypic sensitive isolates can be explained by occurrence of mutation elsewhere outside 81-bp region as shown by Adikaram et al., 2012 [15], or may be due to other mechanism. The 80% sensitivity obtained herein for rpoB mutations within the 81-bp region for predicting the RIF-resistance of M. tuberculosis was lower than the sensitivity reported from other countries which was > 90%.

We conclude that the discovery of one new mutation and isolates lacking mutations mentioned herein emphasizes the need for mutations surveillance prior to the implementation of commercial molecular tools [4], and optimization of these techniques to cover different alleles of rpoB gene in Sudan. In addition, the detection of RIF-resistance by molecular technique [4] must always be confirmed by phenotypic methods in case of absence of mutations. Study limitations include the relatively short region of rpoB sequenced and the small sample size. Despite these limitations, this work characterizes the rpoB mutations in MDR TB in Sudan. In addition, our finding is valuable for the design of screening diagnostic tests for rapid detection of mutations associated with rifampicin resistance in Sudanese clinical isolates.

Acknowledgements
We thank Mutasim for technical assistance. This study was supported by the Tropical Medicine Research Institute grant.

References

Table 1. Frequency of rpoB mutation and antibiotics profile in MDR M. tuberculosis isolates

<table>
<thead>
<tr>
<th>Alleles</th>
<th>Codon</th>
<th>Amino acid substitution</th>
<th>Mutation</th>
<th>No of isolates</th>
<th>RIF</th>
<th>INH</th>
<th>EMB</th>
<th>SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allele 1</td>
<td>531</td>
<td>ser⇒Leu</td>
<td>tcg⇒ttg</td>
<td>23</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Allele 2</td>
<td>531</td>
<td>ser⇒Leu</td>
<td>tcg⇒ttg</td>
<td>1</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>Allele 3</td>
<td>531</td>
<td>ser⇒Trp</td>
<td>tcg⇒tgg</td>
<td>1</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Allele 4</td>
<td>526</td>
<td>His⇒tyr</td>
<td>cac⇒tac</td>
<td>5</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Allele 5</td>
<td>526</td>
<td>His⇒leu</td>
<td>cac⇒gtc</td>
<td>2</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Allele 6</td>
<td>526</td>
<td>His⇒cys</td>
<td>cac⇒tgc</td>
<td>1</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Allele 8</td>
<td>516</td>
<td>asp⇒val</td>
<td>gac⇒gtc</td>
<td>3</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Allele 9</td>
<td>514-515</td>
<td>phe</td>
<td>insertion ttc</td>
<td>2</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Allele 10</td>
<td>511</td>
<td>leu⇒pro</td>
<td>ctg⇒ecg</td>
<td>1</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Allele 11</td>
<td>-</td>
<td>-</td>
<td>No mutation within 81-bp fragment</td>
<td>4</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Allele 12</td>
<td>-</td>
<td>-</td>
<td>No mutation within 81-bp fragment</td>
<td>2</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Allele 13</td>
<td>-</td>
<td>-</td>
<td>No mutation within 81-bp fragment</td>
<td>3</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>Allele 14</td>
<td>-</td>
<td>-</td>
<td>No mutation within 81-bp fragment</td>
<td>1</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
</tr>
</tbody>
</table>
 CG, Kim YW, Han SK, Yim JJ (2013) Diagnostic Accuracy
 and Turnaround Time of the Xpert MTB/RIF Assay in
5. Yadav RN, Singh BK, Sharma SK, Sharma R, Soneja M,
 Sreenivas V, Myneedu VP, Hanif M, Kumar A, Sachdeva KS,
 Paramasivan CN, Vollepore B, Thakur R, Raizada N, Arora
 SK, Sinha S (2013) Comparative evaluation of GenoType
 MTBDRplus line probe assay with solid culture method in
 early diagnosis of multidrug resistant tuberculosis (MDR-TB)
 at a tertiary care centre in India. PLoS One. 5: e72036.
 Characterization of rpoB mutations in rifampin-resistant
 clinical isolates of Mycobacterium tuberculosis from Turkey
 40: 4435-4438.
 Characterization of rpoB mutations in rifampin-resistant
 clinical Mycobacterium tuberculosis isolates from Greece. J
8. Sharaf-Eldin GS, Saced NS, Hamid ME, Jordaan AM, Van
 Molecular analysis of clinical isolates of Mycobacterium
 tuberculosis collected from patients with persistent disease in
 the Khartoum region of Sudan. J Infect. 44: 244-251.
 mycobacteriology, a guide for the level III laboratory, CDC,
 U.S. Department of Health and Human service publication no.
 diversity of multidrug-resistant Mycobacterium tuberculosis
 isolates and identification of 11 novel rpoB alleles in Taiwan.
 J Clin Microbiol. 43: 13901394.
 profiles and rpoB gene mutations of Mycobacterium
 tuberculosis isolates in Taiwan. J Microbiol Immunol
 Mutations in the rpoB gene of multidrug-resistant
 Mycobacterium tuberculosis clinical isolates from India. J
 Clin Microbiol. 39:2987e90.
 (1999) rpoB mutations in multidrug resistant strains of
 Mycobacterium tuberculosis isolated in Italy. J Clin
 in the rpoB of multidrug-resistant Mycobacterium
 tuberculosis isolates from China. J Clin Microbiol. 41:
 2209e12.
 profile of rpoB gene mutations in rifampin resistant
 Mycobacterium tuberculosis isolates in Sri Lanka. Microb
 Drug Resist. 18: 525-30.

Corresponding author
Haitham Elbir
Department of Microbiology, Tropical Medicine Research
Institute, 1304 Khartoum 11111, Khartoum, Sudan.
Phone: 091-330-4594
Fax: 091-330-4594
Email: haythamalbur@hotmail.com

Conflict of interests: No conflict of interests is declared.