Predisposing factor, impactful adjunctive treatment or unfavorable prognostic marker: a meta-analysis on the elusive role of dexamethasone for Listeria monocytogenes meningitis

Alberto Enrico Maraolo1, Maria Mazzitelli2

1 First Division of Infectious Diseases, Cotugno Hospital, Naples, Italy
2 Department of Molecular Medicine, Infectious and Tropical Diseases Unit, Padua University Hospital, Padua, Italy

Abstract

Introduction: There are no randomized controlled trials to inform the choice of using adjunctive dexamethasone (AD) against Listeria monocytogenes meningitis (LMM) and data from observational studies are pretty conflicting.

Methodology: We performed a rapid review of the literature with quantitative analysis. A pairwise random-effects meta-analysis was implemented, pooling unadjusted and adjusted data. The main outcome was mortality.

Results: Across all included studies (five) informing the main analysis on raw mortality data, 199 patients received AD, as opposed to 382 who did not receive AD. All-cause mortality was slightly lower in patients undergoing AD, but not in a statistically significant manner: odds ratio 0.96, 95% confidence interval 0.42-2.19. The prediction interval was very wide (0.06-15.99), suggesting that in future studies the effect of AD might be either beneficial or harmful.

Conclusions: The role of AD for LMM still needs to be established being the current evidence inconclusive and heterogeneous.

Key words: dexamethasone; meta-analysis; neurolisteriosis; therapy; steroid; systematic review.

Copyright © 2023 Maraolo et al. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
analysis, anticipating high heterogeneity due to the lack of known randomized clinical trials (RCTs) addressing the topic. Odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated for dichotomous data.

Moreover, prediction intervals were computed to provide information about statistical heterogeneity, by quantifying the extent of the dispersion in effects as described in other meta-analyses [7]. The I² statistics were calculated to measure the proportion of total variability in effects due to between-study heterogeneity.

Eventually, the leave-one-out method was employed for sensitivity analysis to show how the overall effect estimate changed when different studies were removed, describing also how I² modified when each study was omitted.

All statistical analyses were performed using R Statistical Software (version 4.1.0; R Foundation for Statistical Computing, Vienna, Austria), and by resorting to the following packages: meta, metafor, ggplot2, gridExtra, dmetar.

Results

After the de-duplication of records retrieved through the two aforementioned databases, 115 articles were screened, and six were included in the quantitative analysis. Further details on the inclusion process of the included studies are provided in Supplementary Tables 1-2.

As expected, no RCT was retrieved and only observational studies were included, being their features thoroughly illustrated in detail in Table 1 [1,2,8-11].

Table 1. Main characteristic of the included studies.

<table>
<thead>
<tr>
<th>Study / Authors</th>
<th>Design</th>
<th>Time Span</th>
<th>Country</th>
<th>AD Protocol</th>
<th>Sample size (patients with LMM)</th>
<th>General features</th>
<th>Patients undergoing AD versus patients not undergoing AD</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amaya-Villar et al. 2010</td>
<td>Prospective cohort, multicenter</td>
<td>39-month period (not further specified)</td>
<td>Spain</td>
<td>Not specified; in 14/21 patients, the first AD dose was given previously or concomitantly to the first antibiotic dose</td>
<td>43</td>
<td>Community-acquired LMM; median age 69 years; median time to admission 48.5 hours; median GCS at admission 13; positive CSF cultures in 93% (40/43) of patients; serotype 4b in 23 (82%) of 28 tested cases; appropriate empirical therapy in 93% (40/43) of patients</td>
<td>21 versus 22</td>
<td>Until death or discharge from hospital</td>
</tr>
<tr>
<td>Koopmans et al. 2013</td>
<td>Prospective cohort, multicenter</td>
<td>Two periods: from 1998 to 2002 and from 2006 to 2012</td>
<td>The Netherlands</td>
<td>4 days 10 mg QID (started with or before first dose of antibiotics in 41/49 patients)</td>
<td>30 (first cohort) plus 62 (second cohort)</td>
<td>Community-acquired LMM; women 41% (38/92); immunodepression in 70% (64/92) of patients; coma at admission in 12% (11/92) of subjects; positive CSF cultures in all cases; sequence type 6 (ST6) genotype in 18/85 strains (21%)</td>
<td>49 (AD according to protocol in 30 patients) versus 43</td>
<td>Until death or discharge from hospital (mortality not stratified according to AD use; available only results from multivariable analysis)</td>
</tr>
<tr>
<td>Pelegrn 2014</td>
<td>Retrospective cohort, multicenter</td>
<td>From 1977 to 2009</td>
<td>Spain</td>
<td>4 mg QID for 48 h, eight doses in total, beginning 10-15 min before antibiotic therapy with a doubled first dose</td>
<td>59</td>
<td>Community-acquired LMM; median age 69 years; women 30% (18/59); any underlying condition of immunodepression in 39% (23/59) of patients; median time to presentation 3 days; positive CSF cultures in 64% (34/53) of subjects; appropriate empirical therapy in 75% (50/59) of patients</td>
<td>30 versus 29</td>
<td>Until death or discharge from hospital</td>
</tr>
<tr>
<td>Glimåker 2016</td>
<td>Retrospective evaluation of a national registry</td>
<td>From January 1995 to December 2014</td>
<td>Sweden</td>
<td>2-4 days 10 mg QID, initiated within 1 hour from the start of antibiotics; a fraction of patients was treated alternatively with betamethasone 8 mg QID</td>
<td>77 (but in 7 cases missing data on steroid use)</td>
<td>No demographic data for LMM cases, in the framework of a larger study involving 32 Swedish centers generating a registry on acute bacterial meningitis. The final analysis included 1756 patients</td>
<td>33 versus 37</td>
<td>In-hospital mortality</td>
</tr>
<tr>
<td>Charlier 2017</td>
<td>Prospective cohort, multicenter</td>
<td>From November 3rd 2009 to July 31st 2013</td>
<td>France</td>
<td>Not specified, but given within 24 hours of management in all cases</td>
<td>252</td>
<td>Median age 67 years; women 40% (108/252); at least one immunosuppressive comorbidity in 86% (216/252) of patients; median time interval from first symptoms to diagnosis 2 days; mean GCS at admission 12; positive CSF cultures in 39% (93/253) of patients; pyrervulent clones (clonal complex 1,2,4,6) in 56% (142/252) of subjects</td>
<td>32 versus 216</td>
<td>3-month</td>
</tr>
<tr>
<td>Brouwer 2023</td>
<td>Prospective cohort, multicenter</td>
<td>From January 1st 2006 to July 1st 2022</td>
<td>The Netherlands</td>
<td>4 days 10 mg QID with or < 4 h of first dose of antibiotics</td>
<td>162</td>
<td>Community-acquired LMM; median age 70 years; women 55% (56/162); immunosuppressive medication in 74/161 subjects (46%); median GCS at admission 13; positive CSF cultures in 96% (156/162) of patients; appropriate empirical therapy in 80% (128/161) of patients</td>
<td>83 (AD according to the protocol; 4 days or less in case of death) versus 78 (including 10 subjects in which AD was stopped before the end of the 4 days because of LMM diagnosis; 11 patients receiving AD in a different dose, timing or duration)</td>
<td>Until death or discharge from hospital</td>
</tr>
</tbody>
</table>

AD: adjunctive dexamethasone; CSF: cerebrospinal fluid; GCS: Glasgow Coma Scale; LMM: Listeria monocytogenes meningitis; QID: quarter in die.
Five studies informed the main analysis, based on the pooling of crude, unadjusted data [1,2,8,10,11]: AD exerted a slight protective effect on mortality: OR 0.96, 95% CI, 0.42-2.19, but with no statistical significance, and a wide prediction interval was generated (Figure 1). When considering only adjusted effect sizes, evidence from three cohorts [1,2,9] highlighted on the contrary a worse prognosis associated with AD (OR 1.32, 95% CI, 0.33-5.26), also in this case without reaching statistical significance, and with an even wider prediction interval crossing the no-effect threshold (Figure 2). That suggests that in future studies some patient populations might experience null effects or effects in the opposite direction. The covariates entered in the multivariable models that informed the pooling of adjusted effect sizes are described in Supplementary Table 3.

About the sensitivity analysis (upon the pooling of unadjusted data), the leave-one-out method demonstrated the influence of the Brower’s cohort [1] as an important source of between-study heterogeneity (I² from 75% to 41% when it was removed), but statistical significance was reached neither in one direction nor in the other when omitting any other study (Supplementary Figure 1).

Discussion

Neurolisteriosis accounts for about one-third of human listeriosis cases, among the most important foodborne illnesses worldwide [12]. Listeria monocytogenes is responsible for approximately 1% of bacterial meningitis in neonates and approximately 5% of bacterial meningitis in subjects older than 16 years, most cases occurring in elderly or in those with cellular immunodeficiency [13]. Despite an overall decline in reported incidence, L. monocytogenes remains one of the top five most common causative pathogens of infections of the central nervous system, notably without chance of protection through active immunization as it happens for encapsulated bacteria [13].

Steroid usage, especially in chronic form, is a well-established clinical predisposing factor of listeriosis, but a clear association with mortality has not been highlighted [14].

Case-fatality rate of LMM in developed countries is still relevant and can be as high as 35% [15]. There are many possible explanations: the marked proclivity for the brain itself, differently from other common pathogens bringing about bacterial meningitis [11]; the tendency to generate more commonly meningoencephalitis than isolated meningitis, being encephalitis an unfavorable prognostic marker [2]; the considerable proportion of people not receiving appropriate initial antibiotic treatment (up to 20% in the Brower’s study [1]), when rapid administration of adequate antimicrobial treatment is crucial to prevent complications, death, and long-lasting sequelae in...
human listeriosis [11]. Unfortunately, no RCTs have been conducted so far to define a drug of choice or optimal duration of therapy; the first-line treatment is usually represented by aminopenicillins such as ampicillin or amoxicillin, but many questions remain about, for instance, the potential benefit of combination therapy or the best alternative in case of resistance or allergy to beta-lactams [11].

The further question, pertaining to the present work, is the role of steroids from a therapeutic perspective. The premise is well known: the subarachnoid space inflammatory response is a key factor contributing to morbidity and mortality in ABM, being the action of bacteriolytic antibiotics is a strong propellant in this respect [13]. Dexamethasone, interfering with the cyclooxygenase pathway of arachidonic acid metabolism, has been the agent most extensively studied in experimental animal models and patients, to assess whether the attenuation of this inflammatory response would ameliorate outcome in bacterial meningitis [13].

Conflicting results have emerged over the years upon the impact of AD, being quite apparent in its benefit in cases associated with S. pneumoniae, curtailing the strong inflammatory response induced by either live pneumococci themselves or pneumococcal cell wall components after bacteriolysis [3]. Nevertheless, the advantageous effect of AD on relevant outcomes is not so manifest in studies conducted in developing countries or other etiological subgroups, including cases of L. monocytogenes [3]. Many hypotheses have been generated to explain these findings: for instance, likely, steroids did not reduce mortality for bacterial meningitis in low-income countries since patients are sicker on presentation [13]. Timing of administration is indeed a crucial point: a delayed diagnosis of LMM for atypical presentation or other reasons may drive the use of AD outside the window of opportunity [1].

The results of the MONALISA study raised a red flag for the use of AD in LMM in the light of apparently deleterious effects [2], to the extent that reviews by renowned researchers posited the necessity to stop immediately steroids for ABM when the involvement of L. monocytogenes was ascertained [3,13]. Results from the recent Dutch cohort completely overturned the scenario [1], prompting the present meta-analysis to collate data from each available study on the topic.

What stands out is the relevant heterogeneity in AD protocols and their administration, as described in Table 1. The study conducted by Brower et al. is probably the soundest one from a methodological perspective [1]: AD was administered according to the standard schedule for ABM according to authoritative guidelines [16] and its impact was assessed as if it were a trial using a per-protocol analysis. The MONALISA cohort on the other hand provided much fewer details regarding AD protocol and its implementation [2]. Furthermore, in the French study, there may have been confounding by indication, meaning that only the most severely ill patients were administered AD, since only a minority of the cohort received dexamethasone [2].

Nevertheless, in light of the available evidence, and the conflicting data from adjusted analyses, it is prudent to say that the jury is still out to settle the dispute about the effectiveness of AD in this setting.

Our brief research note has some limitations. It did not rely on a pre-registered protocol. Neither a formal evaluation of the risk of bias nor a systematic approach to rating the certainty of evidence was performed considering the observational nature of the included studies, which are per se prone to many biases, thus automatically implying a low or very low quality of the ensuing evidence. Clinical, methodological, and statistical heterogeneity was huge as showed by large prediction intervals, containing opposite effects.

At once, it represents the first evidence synthesis on the specific topic of the use of AD for neurolisteriosis, presenting a pooling of raw and adjusted data, as recommended when meta-analyzing observational studies [17].

Conclusions

In conclusion, indisputably chronic steroid usage is a risk factor for listeriosis. On the contrary, from the standpoint of therapy, the benefit or the harmfulness of AD in LMM remains a “known unknown”, requiring RCTs to settle the question, although it is difficult to run this kind of study for such a disease.

Acknowledgements

AEM conceptualized and conceived the work, contributed substantially to the acquisition of the data, carried out the analyses, interpreted the findings, and wrote the first draft. MM contributed substantially to the interpretation of the findings and revised the work critically for important intellectual content. Both authors had full access to all the data in the study, approved the final version of the work, and agreed to be accountable for all aspects of the work.

References

Corresponding author
Dr. Alberto Enrico Maraolo, MD, MSc
Antibiotic Stewardship, Advanced Biostatics, FESCMID.
Infectious Diseases Specialist.
First Division of Infectious Diseases, Cotugno Hospital, Naples, Italy.
Tel: +39-081-7067383
Email: albertomaraolo@mail.com

Conflict of interests: No conflict of interests is declared.
Annex – Supplementary Items

Supplementary Table 1. Literature search strategy.

<table>
<thead>
<tr>
<th>PICO framework</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• adult subjects with Listeria monocytogenes meningitis (P—participants);</td>
<td>• adjunctive dexamethasone (I—intervention);</td>
<td>• no adjunctive dexamethasone (C—comparison);</td>
<td>• mortality or neurological sequelae (O—outcome).</td>
</tr>
</tbody>
</table>

Further details: No language restriction. Search from inception to 31 March 2023. Exclusion of cohorts with less than 10 subject per arm.

MEDLINE/PubMed: (((steroid*:ti,ab,kw OR dexamethasone:ti,ab,kw))) AND ((neurolisteriosis:ti,ab,kw OR meningitis:ti,ab,kw OR meningoencephalitis:ti,ab,kw)) AND ((listeria:ti,ab,kw))

EMBASE: (((steroid*:ti,ab,kw OR dexamethasone:ti,ab,kw))) AND ((neurolisteriosis:ti,ab,kw OR meningitis:ti,ab,kw OR meningoencephalitis:ti,ab,kw)) AND ((listeria:ti,ab,kw))

Supplementary Table 2. Phases of the literature screening process.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Medline/PubMed retrieved 73 records; From EMBASE retrieved 125 records</td>
<td>After deduplication, 114 records remained</td>
<td>After screening, 5 records were assessed for full-text review</td>
<td>Overall, 5 articles were included in the quantitative analysis</td>
</tr>
</tbody>
</table>

Supplementary Table 3. Variables adjusted for in the multivariable analyses assessing the impact of adjunctive dexamethasone on clinically relevant endpoints.

<table>
<thead>
<tr>
<th>Study</th>
<th>Variables</th>
<th>Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koopmans 2013</td>
<td>Advanced age, immunocompromised state, infection by L. monocytogenes genotype sequence type 6</td>
<td>Unfavourable outcome (Glasgow Coma Scale 1-4)</td>
</tr>
<tr>
<td>Charlier 2017</td>
<td>Age, gender, ongoing organ neoplasia, recent major weight loss, multi-organ failure, aggravation of any pre-existing organ dysfunction, influenza-like symptoms, mechanical ventilation, monocytopenia, positive blood cultures, protein concentration in the cerebral spinal fluid</td>
<td>3-month mortality</td>
</tr>
<tr>
<td>Brouwer 2023</td>
<td>Age, Glasgow Coma Scale, adequate initial antibiotic regimen</td>
<td>Mortality</td>
</tr>
</tbody>
</table>

Supplementary Figure 1. Results of influential diagnostics related to the main analysis.