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Abstract 
The synthesis of Vi polysaccharide, a major virulence determinant in Salmonella enterica serotype Typhi (S. Typhi), is under the control of 

two regulatory systems, ompR-envZ and rscB-rscC, which respond to changes in osmolarity. Some S. Typhi isolates exhibit over-expression 

of Vi polysaccharide, which masks clinical detection of LPS O-antigen. This variation in Vi polysaccharide and O-antigen display (VW 

variation) has been observed since the initial studies of S. Typhi. We have reported that the status of the rpoS gene is responsible for this 

phenomenon. We review the regulatory network of the Vi polysaccharide, linking osmolarity and RpoS expression. Also, we discuss how 

this may impact live attenuated Salmonella vaccine development. 

 
Key Words: rpoS, VW variation, osmolarity  

 

J Infect Developing Countries 2008; 2(6):412-420. 

  
Received 19 June 2008 - Accepted 6 August 2008 

 
Copyright © 2008 Santander et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, 

distribution, and reproduction in any medium, provided the original work is properly cited. 

 
Introduction 

Salmonella enterica serotype Typhi (hereafter S. 

Typhi) is a facultative intracellular pathogen that causes 

typhoid fever exclusively in humans and is among the 

most costly of human infections in terms of both 

morbidity and mortality [1]. The mechanism 

responsible for the virulence of S. Typhi is different 

from that of other serovars of Salmonella, and in this 

regard S. Typhi produces the virulence capsular 

polysaccharide (Vi), which is an important virulence 

determinant during infection [2]. Vi polysaccharide is a 

linear homopolymer made up of -1,4-linked N-

acetylgalactosaminuronate (GalNAcA), with 60%-70% 

of the monomeric units O-acetylated at the C3 position 

[3,4] and has a molecular mass typically over 200 kDa 

[5]. Virtually all strains isolated from the blood or bone 

marrow of patients with acute typhoid fever and from 

the bile or faeces of those who carry S. Typhi in the 

gallbladder are found to express Vi polysaccharide 

antigen [6,7,8]. Vi positive (Vi
+
) strains were shown to 

be more virulent than Vi mutant strains in experiments 

conducted in human volunteers [2]; Vi
+
 strains are 

resistant to complement-mediated killing and 

phagocytosis [9] and survive in human serum [10]. In 

addition, Vi
+
 strains, but not Vi

-
 mutant strains, can 

multiply in the human macrophage cell line THP-1 and 

in the mouse macrophage-like cell line J774.1 [11]. 

The Vi capsular polysaccharide is a protective 

antigen, with the majority of the antibody response 

directed toward the O-acetyl groups [9,12].  A Vi-

conjugate injectable vaccine is used currently against 

typhoid fever in more than 92 countries [13]. However, 

the ability to pay for the conjugate vaccine remains a 

major factor driving who is and who is not vaccinated. 

One possible way to increase the supply of affordable 

Vi vaccine is to optimise the production of Vi during 

fermentation either by modifying growth conditions 

[14] or by constructing S. Typhi mutants that 

constitutively express high levels of Vi [15]. Therefore, 

a better understanding of the regulation of Vi 

polysaccharide synthesis will not only add to our 

knowledge base of S. Typhi pathogenesis, but also 

allow us to improve Vi antigen production and therefore 

provide a less expensive subunit vaccine. 

 
The viaB locus, a part of SPI-7 

The genes required for Vi biosynthesis (viaB locus) 

are located in a 133.5 kb chromosomal region called 

Salmonella pathogenicity island 7 (SPI-7; G+C 

composition 49%; Figure 1). SPI-7 is bounded by direct 

repeats and inserted between two copies (one partial) of 

a tRNA gene (pheU) and contains genes encoding 

known pathogenicity determinants, including SopE [16] 

and type IV pili [17,18]. SPI-7 is an unstable genetic 
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element that can undergo precise excision, indicating a 

possible role in the lateral transfer of this region among 

Gram negative bacteria [19]. Functional and 

bioinformatic analyses suggest that SPI-7 has a mosaic 

structure and may have evolved as a consequence of 

several independent insertion events [20]. Sequence 

analysis of the SPI-7 region from S. Typhi revealed 

significant synteny with clusters of genes from a variety 

of soil saprophytic bacteria and phytobacteria, raising 

the possibility that SPI-7 and viaB may have originated 

from soil sources [20].    
 

Figure 1. SPI-7 and viaB locus organisation in S. Typhi. The 

dark arrows in the S. Typhi chromosome indicates the rrn 

operons. The SPI-7 is located at 96 min or between 4408807 

nt and 4543148 nt. 

 
 

Biosynthesis of Vi polysaccharide 
The viaB locus consists of 10 genes (Figure 1): 

tviBCDE for Vi polysaccharide biosynthesis and 

vexABCDE for export of the Vi antigen [10, 21, 22], as 

well as tviA, which encodes a regulatory protein that 

plays a role in coordinating expression of Vi antigen, 

flagella and a number of genes required for host 

invasion [23,24,25,26]. Zhang et al. have provided a 

detailed analysis of Vi biosynthesis [5]. They showed 

that Vi polysaccharide is synthesised from UDP-N-

acetylglucosamine in a series of steps requiring TviB, 

TviC, and TviE, where tviB encodes a dehydrogenase, 

tviC encodes an epimerase and tviE encodes a 

glycosyltransferase [5].  The role of tviD is not clear, 

but it appears to encode a cytochrome P-450-like 

enzyme [5]. 
 

Export of Vi polysaccharide 
The Vi antigen export apparatus is composed of 

five polypeptides: VexA, VexB, VexC and VexD, 

which likely form an ABC transporter, and the VexE 

anchoring protein [22,27,28]. Mutants defective in 

VexA, VexB and VexC accumulate the Vi 

polysaccharide in their cytoplasm [29]. VexB and VexD 

have been proposed to be integral membrane proteins 

because they are highly hydrophobic proteins with 

membrane-spanning domains [27,29]. VexC is likely 

the ATP-binding protein [27]. VexA has a putative 

lipoprotein signal sequence indicating that this protein 

may be localised in the outer membrane and could 

therefore mediate the translocation of Vi polysaccharide 

across the outer membrane [22,25,30]. S. Typhi Ty2 

vexE mutants are able to synthesise and export the Vi 

antigen, but do not express it on its cell surface [29].  

Thus VexE is necessary for cell surface expression of 

the Vi capsule. 

 
Regulation of Vi polysaccharide synthesis 

The regulation of Vi polysaccharide synthesis is 

complex and may play a significant role in maintaining 

appropriate levels of Vi production in the different host 

environments encountered by S. Typhi.  In Figure 2, we 

have outlined our current understanding of this 

regulation. Vi antigen synthesis is subject to regulation 

by a pair of two-component systems, rcsB-rcsC (viaA 

locus) [25] and ompR-envZ (ompB locus) [26], which 

both respond to changes in osmolarity. A positive 

regulator, TviA (VipR), activates its own synthesis by 

binding upstream of the tviA promoter [27] and interacts 

with RcsB to promote optimal transcription of genes 

involved in Vi antigen synthesis [24, 25, 28, 29]. In the 

absence of RcsB or TviA, transcription initiated at the 

tviA promoter terminates in the tviA-tviB intergenic 

region, probably at a putative hairpin structure 

identified in this region [29]. 

Vi is expressed preferentially at low and medium 

osmolarities and often masks the LPS O-antigen 

[25,31].  Strains of S. Typhi Ty2 grown in media with 

medium osmolarity (446 mosmol, ~170 mM NaCl [31]) 

exhibit high-level production of Vi antigen. When Vi 

antigen is expressed, the bacteria are less adherent and 

invasive into epithelial cells [30] but are more resistant 

to killing by macrophages [11]. Low to medium 

osmolarity environments might include environmental 

aqueous environments and certain extracellular host 

environments, such as blood, where the osmolarity is 

equivalent to 150 mM of NaCl (310 mosmol) [31,32]. It 

is possible that this preferential expression of Vi 

polysaccharide at low to medium osmolarities serves to 

protect bacterial cells from the complement-mediated 

actions of the O-antigen specific antibody in the blood 

[9]. Recent studies with S. Typhi Ty2 grown under LB 
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conditions (170 mM NaCl), optimal for Vi 

polysaccharide synthesis, showed that Vi 

polysaccharide reduced TLR-dependent IL-8 

production in human colonic tissue explants, suggesting 

that the scarcity of neutrophils in intestinal infiltrations 

of typhoid fever patients is due to the Vi polysaccharide 

[33].  In addition, at low osmolarity, RcsB, acting in 

association with TviA, negatively controls the 

transcription of flhDC, which is apparently required for 

activation of iagA (hilA), invF and sipB (encoding 

proteins involved in cell invasion) [25, 34]. However, in 

high osmolarity environments such as in the intestinal 

lumen, with values believed to be equivalent to 300 mM 

of NaCl and greater [31], transcription of iagA, invF, 

and sipB is markedly increased and the transcription of 

genes involved in Vi biosynthesis is markedly 

decreased [25]. Under these conditions, S. Typhi is 

more invasive into epithelial cells but less resistant to 

killing by macrophages [11]. Therefore, the Vi antigen 

of S. Typhi is a negative factor for invasion but a 

positive factor for surviving and multiplying inside 

macrophages [11]. In keeping with this observation, 

Zhao et al. showed that at ≥ 300 mM NaCl, but not at 

10 mM NaCl, S. Typhi GIFU1007 did not express Vi 

antigen and exhibited a high invasion index in epithelial 

cells together with high secretion of SipC protein [35]. 

 
VW variation a subtle regulation of Vi 
polysaccharide by RpoS 
The synthesis of Vi antigen increases as the osmolarity 

decreases (Figure 3), masking the O antigen (Table 1 

and [24]).  At osmolarities of 676 mosmol (300 mM of 

NaCl) or higher, the Vi antigen no longer blocks 

detection of the O-antigen (Table 1). Since the Vi 

polysaccharide can block access of antibodies to the 

underlying O-antigen, sometimes agglutination with 

Salmonella somatic D1 antiserum cannot be 

demonstrated until the bacterial cells are boiled to 

remove the Vi polysaccharide [36].   

Starting from the initial studies on S. Typhi, 

variation in Vi and O-antigen detection has been 

observed. S. Typhi strains non-agglutinable with O-

antisera and agglutinable only with Vi antisera, are 

called V form while S. Typhi strains that lack the Vi 

antigen and agglutinate only with O-antisera are called 

W form [37]. Observations recorded by Kauffman [38] 

and confirmed by Felix and Pitt [39] demonstrated the 

concept of VW variation in Vi and O antigen 

relationships. The VW form, which is the most common 

form observed in clinical laboratories, is defined when 

both Vi and O-antigen are detected by agglutination 

with the respective antisera [37]. Coincident with the 

early work of Felix and Pitt [39], and since verified by 

others [11,40,41,42], most virulent strains of S. Typhi, 

were the VW form. 
 
Figure 2. Regulatory network of Vi polysaccharide. Two 

two-component regulatory systems are involved in the 

regulation of Vi antigen expression in S. Typhi. The rcs 

system positively regulates transcription of tvi genes. 

Moreover, interaction between TviA and RcsB proteins is 

necessary for maximal transcription of tvi genes. 

OmpR/EnvZ is the second regulatory pair involved in the 

regulation of Vi polysaccharide expression. An increase in 

the environmental osmolarity leads to negative regulation of 

Vi antigen synthesis by inhibition of rcsC transcription. 

Molecular mechanisms involved in this regulation remain to 

be determined. OM: Outer membrane; P: Periplasm; IM: 

Inner membrane. 

 

 
 
Effect of rpoS on Vi synthesis  

In Salmonella, the rpoS gene encodes an alternative 

sigma factor (
s
/RpoS) that is the master regulator in 

the general stress response and is required for survival 

under extreme conditions, including osmotic and 

oxidative stress, transition to stationary phase, acid 

shock, [43,44] and for virulence of S. Typhimurium 

[45,46,47, 48,49]. RpoS controls expression of the S. 

Typhimurium virulence plasmid genes, spvRABCD [46, 

47]. In addition, RpoS regulates chromosomal genes 

required for colonisation of Peyer’s patches and for 

persistence in mice [48,49]. S. Typhi does not contain a 

virulence plasmid and the role of rpoS in the virulence 

of this serotype has not been rigorously studied. 

However, rpoS might also contribute to the virulence of 
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this serotype because RpoS
–
 strains of S. Typhi are less 

cytotoxic than RpoS
+
 strains, but RpoS

–
 strains survive 

better inside resting THP-1 macrophages without 

apoptosis induction [50]. Recent studies in our 

laboratory indicate that there is a correlation between Vi 

polysaccharide over-expression and the allelic state of 

the rpoS gene [51].  

High osmolarity is one of the environmental signals 

that induces rpoS through the RcsB-RprA pathway 

[43,48]. Since the osmolarity of the growth media 

influences the synthesis of Vi antigen, we examined 

strains with different rpoS genotypes, in media with 

different osmolarities, for levels of Vi antigen synthesis. 

RpoS
+
 strains grown at osmolarities less than 676 

mosmol (~300 mM NaCl [31]) showed over-expression 

of Vi antigen sufficient to cover the somatic O-antigen 

(Table 1). The phenotypically O-antigen negative 

strains were boiled and the O-antigen was subsequently 

detected in all cases, indicating that Vi was masking the 

intact LPS. The level of Vi polysaccharide synthesis 

was higher in RpoS
-
 strains than in RpoS

+
 strains, 

although Vi synthesis was responsive to changes in 

osmolarity for both genotypes (Table 1; Figure 3).  

Pickard et al. [24] showed in S. Typhi vaccine strains 

that the ompB locus is required for Vi synthesis and is 

influenced by osmolarity. These authors also observed 

that S. Typhi Ty2 and S. Typhi ISP1820 have different 

levels of Vi antigen synthesis when these strains were 

grown in different osmolarities.  They suggested that 

this difference could be due to a mutation in Ty2 owing 

to in vitro passage, since it is an older isolate. In fact, it 

was subsequently shown that S. Typhi Ty2 carries an 

rpoS frame-shift mutation [52].  However, it is not clear 

whether this mutation was present in the original isolate 

or is a result of laboratory passage.  In one recent study, 

36% of fresh human S. Typhi isolates were found to be 

rpoS mutants [53].  We confirmed that the rpoS allelic 

state is in fact responsible for these observations by 

constructing an rpoS deletion in ISP1820 [51].  In 

addition, we constructed an RpoS
+
 derivative of Ty2. 

RpoS
+
 Ty2 had the same Vi phenotype as ISP1820 and 

the RpoS
-
 derivative of ISP1820 had the same 

phenotype as Ty2 (Table 1). 

Rocket immune electrophoresis assays indicated 

that RpoS
+
 strains down-regulate Vi antigen expression 

(Figure 3). Maximum Vi polysaccharide levels were 

observed at 150 mM NaCl for both Ty2 (RpoS
–
) and 

ISP1820 (RpoS
+
), but Ty2 produced more Vi than 

ISP1820 at all osmolarities tested (Figure 3).  These 

results support our interpretation of the agglutination 

results in Table1 and indicate that RpoS down-regulates 

Table 1. O9 and Vi slide agglutination reactions of S. Typhi 

strains grown on LB agar (pH 7) supplemented with different 

amounts of NaCl at 37°C overnight (18-24 h). O9 agglutination 

reactions were carried out without prior boiling of cells. The degree of agglutinations 

ranged from not detectable (-) to weak (+) to strong (+++); ± and ++ indicate 

intermediate degrees.  Adapted with permission from Santander et al. [51]. 

 
 Environment Blood-Fluid tissues 

NaCl 
(mM) 0 10 85 150 

Strains O9 Vi O9 Vi O9 Vi O9 Vi 

Ty2 
RpoS-  +++  +++  +++  +++ 

ISP 
RpoS+ ++ ++ +++ ++ ++ ++ ++ ++ 

Ty2 
RpoS+ ++ ++ +++ ++ ++ ++ +++ ++ 

Ty2 
rpoSΩAp – +++ – +++ – +++ – +++ 

ISP 
rpoSΩAp – +++ – +++ – +++ – +++ 

 Intestinal lumen 

NaCl 
(mM) 300 400 500 

Strains O9 Vi O9 Vi O9 Vi 

Ty2 
RpoS- ++ +++ +++ + +++  

ISP 
RpoS+ +++  +++  +++  

Ty2 
RpoS+ +++ – +++ – +++ – 

Ty2 
rpoSΩAp ++ +++ +++ + +++ – 

ISP 
rpoSΩAp ++ +++ +++ + +++ – 

 
Figure 3. Evaluation of the effect of RpoS in the synthesis of 

Vi polysaccharide in S. Typhi by rocket immune 

electrophoresis. S. Typhi Ty2 RpoS
–
; S. Typhi ISP1820 

RpoS
+
; S. Typhi Ty2 RpoS

+
 dervivative; S. Typhi Ty2 

rpoSΩAp (RpoS
–
) derivative; S. Typhi ISP1820 rpoSΩAp 

(RpoS
–
) derivative; The strains were grown in LB media with 

0, 0.15, 0.3 and 0.4 M NaCl.  Reproduced with permission 

from Santander et al. [51]. 

 
 

Vi polysaccharide synthesis in S. Typhi. The molecular 

mechanism governing how and why RpoS 

accomplishes this is still an open question.     
 

Effect of rpoS on Vi antigen synthesis and the effect on 

Hd detection  

The allelic variant of the fliC gene present in S. 

Typhi strains encodes one type of flagellin, designated 
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Hd [25]. S. Typhi GIFU10007 appeared to require 

intrinsic, intact motility for invading cultured epithelial 

cells, as non-motile mutants were not invasive [54]. The 

production of the Hd flagellin, as well as Vi antigen, is 

modulated by the RcsB-RcsC regulatory system in 

response to changes in the osmolarity of the growth 

medium [25]. We have examined Hd synthesis in strains 

with different rpoS genotypes grown in media with 

different osmolarities [51]. The synthesis of Hd flagellar 

antigen in RpoS
+
 strains was detected at all osmolarities 

tested. In contrast, the Hd flagellar antigen was not 

detected in RpoS strains at osmolarities of 10 mM NaCl 

or lower (Table 2) unless the samples were first boiled, 

indicating that the Vi antigen masks flagellar antigens at 

low osmolarities in RpoS strains. Western blot analysis 

revealed a low level of Hd flagellin synthesis when cells 

were grown in a low osmolarity medium, as expected 

(Figure 4). Similar results were obtained using 

arabinose inducible rpoS strains [51], where masking of 

flagellar antigens at low osmolarity was only observed 

when cells were grown in the absence of arabinose [51].  

 
Table 2. Hd flagellar antigen slide agglutination reactions of 

S. Typhi strains grown on LB agar (pH 7) [76] supplemented 

with different amounts of NaCl at 37°C overnight (18-24 h). 
The degree of agglutinations ranged from not detectable (-) to weak (+) to strong (+++); 

 and ++ indicate intermediate degrees. Adapted with permission from Santander et al. 

[51] 

 

 NaCl (mM) 

Strains 
0 10 85 150 300 400 500 

Ty2 RpoS    +++ +++ +++ +++ +++ 

ISP RpoS
+
 ++ +++ +++ +++ +++ +++ +++ 

Ty2 RpoS
+
 ++ +++ +++ +++ +++ +++ +++ 

Ty2 rpoS Ap – – +++ +++ +++ +++ +++ 

ISP rpoS Ap – – +++ +++ +++ +++ +++ 

 
Evaluation of Vi polysaccharide synthesis in S. Typhi 

RpoS
+
 strains during growth.  

RpoS is a key factor in the stress response during 

the transition from the exponential growth phase to the 

stationary growth phase [43]. Very little RpoS is 

detected in exponentially growing E. coli cells, due to 

either low levels of expression or protein instability 

[56,57]. To determine what impact this might have on 

Vi expression, we evaluated the effect of growth phase 

on Vi and RpoS synthesis in S. Typhi. RpoS was not 

detected in the early exponential phase, but was 

detectable from the middle exponential growth phase 

cultures and into the early stationary phase (Figure 5), 

although bubble production in the catalase test was 

positive only in the stationary phase. Notably, Vi 

polysaccharide synthesis decreased as RpoS 

accumulated (Figure 5).  There was no growth phase 

dependent reduction in Vi antigen synthesis in strain 

Ty2 (RpoS
–
). These results indicate that the RpoS 

allelic state is responsible for the VW and V variation in 

S. Typhi. RpoS
-
 strains over-express the Vi 

polysaccharide without RpoS regulation, leading to a 

permanent V form. RpoS
+
 strains exhibit both forms, 

the V form during the early exponential growth, when 

RpoS is not expressed or expressed at low levels, and 

the VW form, when RpoS is expressed.  The W form 

(Vi
–
) can be caused by spontaneous deletion of SPI-7, 

where the viaB loci is located [19]. 
 
Figure 4. Evaluation of Hd (S. Typhi flagella factor; 55 kDa) 

and RpoS expression in different osmolarities by western 

blot. S. Typhi Ty2 RpoS
-
; S. Typhi ISP1820 RpoS

+
; The 

strains were growth in LB media with 0, 0.15, 0.3 and 0.4 M 

of NaCl.  Reproduced with permission from Santander et al. 

[51].   

 

 
 
Vaccine development 
The live typhoid vaccine Ty21a, which is an RpoS, 

GalE
-
 and Vi

-
 [57] derivative of S. Typhi Ty2 [58], has 

been evaluated in several clinical trials and found to be 

well tolerated, although only modesty immunogenic; 

three or four doses are required to confer protection 

[59,60,61,62]. The rpoS mutation could affect the 

immunogenicity in recombinant vaccines [63]. In fact, 

live typhoid vaccines derived from Ty2 (RpoS
-
) have 

yielded poor results when used as a live recombinant S. 

Typhi vaccine (RAStyVs) expressing protective 

antigens from a diversity of pathogens 

[64,65,66,67,68,69]. It is thus possible that the poor 

immunogenicity observed for Ty21a may be the result 

of the rpoS mutation rather than Vi antigen deletion. On 

the other hand, over-expression of Vi antigen in Ty2 
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could decrease adherence to and invasion into intestinal 

tissues necessary to colonise more internal lymphoid 

effector tissues [64]. In S. Typhimurium, it has been 

demonstrated that chromosomal RpoS-regulated genes 

are necessary for invasion into and colonisation of the 

gut-associated lymphoid tissue (GALT) [49]. In accord 

with this, RpoS
-
 S. Typhimurium mutants exhibit 

diminished immunogenicity [70,71]. The RpoS-

regulated genes carried on the S. Typhimurium 

virulence plasmid appear to play no role in this effect 

[70,71].   
 
Figure 5. Evaluation of Vi polysaccharide synthesis in S. 

Typhi RpoS
+
 during growth. A. RpoS expression during the 

growth curve. GroEL was used as control. The strains were 

growth in LB medium with 150 mM of NaCl; B. Vi 

polysaccharide expression during the growth; C. Growth 

curve. S. Typhi Ty2 RpoS
–
; S. Typhi ISP1820 RpoS

+
. 

Reproduced with permission from Santander et al. [51]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Furthermore, S. Typhi ISP1820 (RpoS
+
) seems to 

be more virulent in humans than S. Typhi Ty2 (RpoS
-
) 

[72]. In concordance, S. Typhi CVD906, a live vaccine, 

derived from ISP1820 with deletion mutations caused 

fever and other adverse reactions in humans in aroC 

and aroD [73], is highly immunogenic but  [72,74]. 

This is in contrast to the S. Typhi CVD908 Ty2 aroC 

aroD vaccine strain, which did not cause any adverse 

effects [72]. These results collectively imply that RpoS
+
 

S. Typhi, with or without ability to produce the Vi 

capsular antigen, might be superior to RpoS
–
 strains as a 

vector in the development of recombinant attenuated 

Salmonella vaccines for humans [75,76], although they 

will require more effective means of attenuation that 

has been used previously in S. Typhi Ty2 vaccine 

constructions. We are currently testing this hypothesis 

in human volunteers. 
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