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Abstract 
Salmonella enterica serovar Typhi (Typhi), the aetiologic agent of typhoid fever, is a human restricted pathogen. Elucidation of the 

interactions between the infected host and this pathogen is critical to understand infectious diseases but is deterred by a lack of in vivo 

infection assays, since Typhi uniquely infects humans and there is no suitable animal model. Macrophages can be used as an alternative 

model, as the ability to survive and replicate within these cells is thought to be one of the major pathogenesis determinants for Salmonella. 

Typhi genes that are expressed within human macrophages have been identified, as well as Typhi immunogenic proteins expressed in 

humans with typhoid. Known virulence factors of Salmonella are expressed during infection of macrophages, such as SPI-2 encoded genes, 

supporting the validity of the model; however, many genes of unknown functions are also expressed. The importance of these genes should 

be investigated during future studies aimed at elucidating the intracellular lifestyle of this human-specific pathogen. This review describes 

Typhi genes expressed during infection or involved in cell interaction. 
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Introduction 

Understanding Typhi pathogenesis is deterred by a 

lack of in vivo infection assays since Typhi only infects 

humans; thus there are no suitable animal models 

available. Because Typhi is restricted to humans, 

Salmonella enterica serovar Typhimurium 

(Typhimurium), a serovar with a high degree of genome 

homology (>90%) [1,2], has been used for many years 

to study typhoid fever pathogenesis using a murine 

infection model in which Typhimurium causes a 

systemic infection. This model has been crucial in 

understanding systemic infections by Salmonella. 

However, it has also been demonstrated that the mouse 

model does not always reflect the human disease. For 

example, the ability to disseminate from the bowel and 

establish extraintestinal niches is promoted by the spv 

locus located on the virulence plasmid in Typhimurium. 

The absence of the spv genes from Typhi is a strong 

indication that the pathogenesis of typhoid fever is 

fundamentally different [3]. Moreover, we need to 

confirm that what we have learned using the murine 

model with Typhimurium is applicable to Typhi. Many 

Salmonella virulence factors have already been 

identified and studied, but there are inevitably many 

more to discover.  

Macrophages represent an important host defense 

mechanism in humans infected with Salmonella and the 

ability to survive and replicate within these cells is 

thought to be one of the major pathogenesis 

determinants for Salmonella [4,5]. Different molecular 

approaches have been developed and used to identify 

Salmonella genes expressed during infection. One way 

to understand molecular mechanisms of pathogenesis is 

to study the transcriptional response of the bacteria 

during infection, as virulence factors may be 

specifically expressed during the course of typhoid 

infection. Global expression profiling using microarrays 

can help to define the mechanisms required by the 

bacteria to cause disease and the host responses 

required to defeat bacterial infection. However, 

technical issues currently impede transcriptional 

profiling of bacterial genes during host infection 

because of the relatively small number of bacteria 

present in an infected host, the short half-life of RNA, 

and the scarcity of polyadenylation on transcripts. Two 

transcriptomic studies of Typhi have been performed: 

one that focused on in vitro conditions that could be 

encountered in vivo, such as peroxide induced stress [6], 

and one during infection of human macrophages [7]. 

Proteomic profiling is another approach that has been 



Daigle – Typhi gene expression 

 432 

 

J Infect Developing Countries 2008; 2(X): 431-437. 

used to obtain information regarding bacterial 

metabolism or mechanisms used to survive within 

various cell types by identifying proteins produced 

within host cells [8,9]. Proteomics methods have been 

based on the use of different mass spectrometry-based 

methods to identify bacterial proteins produced within 

host cells. A proteomics analysis of Typhi grown in low 

pH, low magnesium minimal media (MgM or LPM) 

was recently reported [10]. MgM is designed to 

approximate the phagosome of infected macrophages 

and is known to induce expression of SPI-2 virulence 

genes and other genes related to virulence and 

intramacrophage survival [11]. Another strategy that 

has recently been developed identifies bacterial antigens 

that are immunogenic and produced during infection, a 

technique called in vivo induced antigen technology 

(IVIAT) [12]. This technique was successfully used to 

identify Typhi proteins produced in typhoid patients 

[13].  

In this review, in vivo gene expression of Typhi is 

described, focusing mainly on Typhi genes expressed 

within macrophages. 

 
Salmonella pathogenicity islands (SPI) 

SPIs are insertions of large regions of DNA 

containing virulence genes, located on the bacterial 

chromosome. These gene blocks are often inserted near 

a tRNA gene and generally display distinct codon usage 

and a different overall base composition from the core 

bacterial chromosome, suggesting that they were 

acquired from a foreign source. Thus far, 15 SPIs have 

been identified in Typhi [1,14]. SPI-1 and SPI-2, which 

are present in all S. enterica serovars, represent 2 major 

pathogenesis determinants that encode type III secretion 

systems (T3SS). SPI-1 and SPI-2 T3SS have distinct 

roles in Salmonella pathogenesis. SPI-1 effectors are 

injected into host cells via the T3SS and are required for 

invasion of epithelial cells [15], whereas SPI-2 

contributes to Salmonella survival inside macrophages 

[16, 17]. Although these systems are important and 

even crucial for Typhimurium, very little information is 

available concerning Typhi. 

SPI-1. Many Typhi genes involved in invasion 

identified so far are homologous genes present in 

Typhimurium, including SPI-1 genes (invC, invA, invE, 

invG, prgH, iagAB, sipEBCDA) [18-23] (Table 1). 

There should be distinct invasion genes that remain 

unidentified as Typhi adheres, invades, and migrates 

through human epithelial cells better than Typhimurium 

[20,24]. Moreover, optimal adherence occurs at high 

osmolarity, when the Vi capsule is produced at its 

lowest levels [20,25]. Some SPI-1 genes are up-

regulated following uptake by macrophages, but most 

genes are not differentially expressed when compared to 

bacteria present in the supernatant of macrophages [7]. 

This finding may be different if another growth 

condition is used as the comparator. Thus, as for 

Typhimurium, a key role for SPI-1 T3SS in invasion is 

predicted for Typhi. 

SPI-2. The SPI-2 locus of S. enterica is 40 kb in 

size and is divided into two functional entities. A 

portion of 25 kb, important for virulence, contains the 

T3SS and several translocated effectors. In contrast, the 

15-kb portion encodes the tetrathionate reduction (ttr) 

system and proteins of unknown function and was not 

required for virulence [26]. Although a crucial role in 

virulence for SPI-2 in Typhimurium has been 

demonstrated and its importance has been well 

established, the data concerning Typhi SPI-2 genes are 

almost nonexistent. A Typhi strain bearing a double 

mutation in ssaV (a SPI-2 gene) and in aroC (aromatic 

biosynthesis) was previously shown to survive less 

efficiently in human macrophages compared to the 

wild-type parent strain [27]. In human volunteers, this 

doubly mutated strain was attenuated [28] (Table 1). 

Within human macrophages, many of the Typhi SPI-2 

genes that belong to the 25 kb locus (18 out of 31) are 

up-regulated following bacterial uptake, and the 

majority of SPI-2 encoded genes are up-regulated 2 h 

post-infection (29 out of 31). Most of the SPI-2 

encoding genes are also up-regulated until 24 hours 

post-infection (26 out of 31) [7]. The Typhi SPI-2 genes 

located on the 15 kb locus are not differentially 

expressed. Moreover, Typhi may not use the ttr system 

as ttrS is a pseudogene in CT18 [1].  

SPI-7. SPI-7 is a large 134 kb segment which is 

absent from Typhimurium and encodes the Vi antigen 

as well as the Type IV pili (see adhesins) and the SopE 

prophage. The virulence of Typhi is associated with the 

presence of the Vi antigen, which is needed for Typhi to 

survive inside phagocytes and necessary for serum 

resistance, a characteristic required for systemic 

dissemination [29-31]. The Vi polysaccharidic capsule 

is encoded by the viaB locus, which is composed of 11 

genes and contains two regions: one involved in 

biosynthesis, including tviA-E, and the other required 

for translocation of the polysaccharide to the cell 

surface, vexA-E [32]. The cDNA corresponding to the 

tviB gene has been captured and cloned from human 

macrophages 2 hours post infection but is not detected 

24 hours post-infection [33]. A transcriptomic study of 

Typhi genes in macrophages did not demonstrate up-
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regulation of the viaB locus; however, the tviABCD 

region was not present on the microarray and 

expression of these genes could not be assessed [7]. 

However, a Typhi strain harboring a deletion in the 

viaB locus was shown to be highly invasive, which can 

be explained by the production of the SPI-1 T3SS [23]. 

Similarly, by using a tviB mutant, the presence of the Vi 

capsule has been shown to inhibit adhesion as well as 

invasion of epithelial cells [34] (Table 1).  

 
Table 1. Typhi genes involved in pathogenesis. 
Class Gene or 

ORF 
Strain Phenotype/ 

Expression 
Ref. 

SPI-1 invC 
(spaI) 

ISP1820 Non invasive 
Henle-407 

[18] 

 invA ISP1820, 
GIFU100
07 

Non invasive on 
INT-407 

[20, 23]  

 invE ISP1820 Non invasive on 
INT-407 

[20] 

 invG ISP1820 Non invasive on 
INT-407 

[19] 

 prgH ISP1820 Non invasive on 
INT-407 

[19] 

 iagAB 
(hilA) 

Ty2 Non invasive on 
HeLa 

[62] 

 sipEBCD
A 

Ty2 Non invasive on 
HeLa 

[21] 

SPI-2 ssaV* Ty2 Less survival in 
U937 macrophage; 
attenuated in 
human 

[27, 28] 

 ssaTS, 
yscR, 
ssaN, 
ssaJ, 
sscB, 
sseED, 
sscA, 
sseB, 
ssaED, 
spiA, 
ssrA, 
ssaV 

ISP1820 Up in THP-1 [7] 

Class Gene or 
ORF 

Strain Phenotype/ 
Expression 

Ref. 
 

SPI-3 mgtC, 
mgtB 

ISP1820 Up in THP-1 [7] 

SPI-5 pipD ISP1820 Up in THP-1 [7] 

SPI-6 safE, 
safB 

ISP1820 Up in THP-1 [7] 

SPI-7 STY4633 ISP1820 Up in THP-1 [7] 

 tviB ISP1820 Up 2h pi in THP-1 [33] 

  TY2 More invasive on 
INT-407 

[34] 

 viaB 
locus 

GIFU100
07 

More invasive on 
INT-407 

[23] 

SPI-10 prpZ Ty2 Less survival in 
THP-1 

[35] 

SPI-11 pagC  Detected in human 
serum 

[13] 

  ISP1820 Up in THP-1 [7] 

 pagD, 
envE 

ISP1820 Up in THP-1 [7] 

Adhesion tcfB  Detected in human 
serum 

[13] 

 stbD  Detected in human 
serum 

[13] 

 csgGFE  Detected in human 
serum 

[13] 

 stgABCD ISP1820 Less adherent to 
INT-407; higher 
phagocytosis by 
THP-1 

[39] 

 pil J341 Less entry in INT-
407, and THP-1 

[37, 38] 

 fim GIFU100
07 

More invasive on 
INT-407 

[36] 

Anti- 
microbial 
resistance 

acrA  Detected in human 
serum 

[13] 

 pspCDE  Detected in human 
serum 

[13] 

  ISP1820 Up in THP-1 [7] 

 phoP, 
pmrF, 
ugtL, 
pqaB, 
pgtE, 
mig-14, 
somA 

ISP1820 Up in THP-1 [7] 

 phoP TY2 Restricted in U937; 
Less invasive to 
HT-29 

[43, 59] 

 mliC 
(ydhA) 

ISP1820 Lower survival in 
THP-1 

[33] 

Motility fliA, 
flhDC 

ISP1820 Less invasion of 
Henle-407; Less 
cytotoxic on 
J774.A1 

[18] 

 fla- GIFU100
07 

Non invasive on 
HeLa 

[61] 

Sigma 
factor 

rpoS GIFU100
07 

Less cytotoxic on 
THP-1 

[58] 

  Ty2 Less invasive on 
HT-29 

[57] 

*also aroC-. 

 
Other SPIs. The role of genes that belong to other 

pathogenicity islands in Typhi pathogenesis has not 

been investigated in depth yet. The magnesium 

transport system mgtBC located on SPI-3 is 
strongly induced intracellularly by Typhi during 

infection of macrophages, as well as pipD located on 

SPI-5, and pagC, pagD, and envE of SPI-11 [7]. PagC 

is produced in typhoid patients [13]. On SPI-10, the 

prpZ locus encoding for proteins with homology to 

eukaryotic-type Ser/Thr protein phosphatase and 

kinases has been found to promote survival in 

macrophages [35] (Table 1).  

 
Adhesins 

The genome of serovar Typhi contains 13 putative 

operons corresponding to fimbrial gene sequences 

termed bcf, csg (agf), fim, saf, sef, sta, stb, stc, std, ste, 

stg, sth and tcf, and pil, the type IV pili [1]. Five of 

these operons, sef, sta, ste, stg, and tcf, and the Type IV 

pili are not detected in serovar Typhimurium [1] and 
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may be important for Typhi host specificity. In typhoid 

fever patients, antibody to 3 fimbrial systems, TcfB, 

StbD, and CsgEFG, has been detected [13]. The csg 

operon is also up-regulated 2 hours post infection inside 

macrophages [7]. A Typhi strain carrying a deletion of 

the fim genes, encoding for type 1 fimbriae, is more 

invasive than the wild-type strain [36]. In absence of 

Type 1 fimbriae, different bacterial surface proteins 

may become available to interact with host cells, 

causing a higher level of invasion. The pil genes 

encoding for type IV pili facilitate Typhi entry into 

human intestinal epithelial cells and macrophages 

[37,38]. The deletion of stg reduced adherence of Typhi 

to epithelial cells but increased uptake by human 

macrophages, although survival inside macrophages 

was similar to the wild-type parent [39] (Table 1). 

 
Antimicrobial resistance 

An important host defense mechanism involves 

production of antimicrobial peptides. Responses to 

antimicrobial peptides in Salmonella involve the phoPQ 

two-component system regulator, the pmr operon [40], 

ugtL [41], pagP [42], pqaB [43], pgtE [44], virK and its 

homologue somA (ybjX) [45] and mig-14 [46, 47]. 

These genes are up-regulated by Typhi in human 

macrophages [7]. The PhoPQ system has also been 

shown to regulate hundred of genes in Salmonella, 

reviewed in [48]. A phoP mutant was shown to be 

restricted in net growth in U937 macrophages [43] and 

the live attenuated vaccine strain Ty800 harbours a 

phoP mutation [49] (Table 1).  

Lysosyme is another component produced by the 

host to eliminate the bacterial invader by attacking the 

bacterial cell wall, but some bacteria produce lysosyme 

inhibitors to evade antibacterial enzymes. A novel 

family of lysozyme inhibitors was recently discovered, 

mliC (ydhA) (membrane bound lysosyme inhibitor of c-

type lysozyme) [50] and seem to promote macrophage 

survival of Typhi [33]. The phage-shock-protein (Psp) 

system responds to stresses and may be involved in 

antimicrobial resistance [51]. PspC, PspD and PspE 

were identified by IVIAT during human infection with 

Typhi [13] and are also up-regulated in human 

macrophages [7] (Table 1).   

 
Metal transport 

It has been shown that a Typhi mutant defective for 

enterochelin synthesis and transport has a lower ability 

to enter and proliferate in epithelial cells and 

macrophages [52-54]. Some proteins involved in heavy 

metal transport, MerP and STY0909, were identified by 

IVIAT during human infection with Typhi [13]. 

However, during infection of human macrophages, 

Typhi genes involved in iron acquisition and transport 

(such as fes, fhu, feo, ent, iro) are down-regulated 

intracellularly [7]. It is possible that these genes are 

already up-regulated in the supernatant of infected cells 

or the conditions that were used as a comparator. 

Alternatively, it may be a bias of the cultured THP-1 

model as intracellular pathogens such as 

Mycobacterium tuberculosis and Typhi do not seem to 

face iron limiting conditions in these cells; their 

transcriptional profiles did not correspond with a 

predicted low-iron environment [7,55]. 

 
Other genes 

The sigma factor RpoS is a global stationary phase 

regulator, controlling expression of many virulence 

associated systems, including Vi synthesis [56], and is 

required for virulence of Salmonella [57]. A mutation in 

rpoS renders Typhi less cytotoxic to THP-1 

macrophages and although the mutant survives 

similarly to the wild-type strain [58], the mutant was 

less invasive on epithelial cells [59] (Table 1). 

Transcription of rpoS was shown to increase in 

macrophages [7, 58]. Moreover, Ty2 and the live oral 

vaccine Ty21a strains are rpoS mutants [60]. 

Typhi flagellar mutants (flhDC or fliA) are deficient 

in cell invasion, and result in a reduction of SPI-1 gene 

expression, which is more pronounced in Typhi than 

Typhimurium [18]. Macrophage cytotoxicity is also 

reduced in flagellar mutants [18]. The motility defect 

cannot be restored by centrifugation as observed with 

Typhimurium [61]. 

 
Conclusion 

Host-pathogen interactions are very complex and 

considerable effort is required for their elucidation. 

Studying interactions between the infected host and 

Typhi should improve our understanding of typhoid 

fever. Typhi has developed remarkable persistence 

mechanisms within the host that help ensure its survival 

and transmission. However, data on human typhoid 

collected by using modern immunological and 

molecular techniques are scarce since Typhi uniquely 

infects humans, and there are no suitable animal models 

available. As survival within macrophages is an 

essential step for Salmonella pathogenesis, 

macrophages represent a useful model to study Typhi. 

Typhi gene expression during infection was monitored 

in human macrophages. In effect, the transcriptome of 

Typhi from infected macrophages at 2 hours, 8 hours, 
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and 24 hours post-infection has been obtained [7]. 

Interestingly, 117 genes are up-regulated at all 

intracellular time points. Of these, 32 genes belong to 

SPIs or have been previously associated with 

pathogenicity, including 17 genes from SPI-2, involved 

in intracellular survival. Twenty genes that belong to 

the membrane lipoproteins and porins class were 

identified, suggesting important adaptations and 

modifications at the outer membrane level. Many genes 

(30) encoding for hypothetical or unknown proteins 

were identified and await further investigation to 

determine their possible roles as novel virulence factors. 

Similarly, 19 of the constitutively up-regulated genes in 

macrophages are absent in Typhimurium, suggesting 

such Typhi-specific genes may be involved in survival 

in macrophages. Because of a lack of accumulated data, 

it may be too premature to compare gene expression 

between Typhi and Typhimurium. Moreover, the model 

used is often different. However, Typhi is less adherent, 

invasive and cytotoxic than Typhimurium [4, 34] 

suggesting that many differences are left to be 

discovered. 

In order to circumvent the limitations associated 

with in vitro models, proteins that are immunogenic and 

expressed uniquely in humans with typhoid were 

identified using IVIAT [13]. Of the 30 identified 

antigens encoded on the chromosome, 16 were also up-

regulated at least at one time point during infection of 

macrophages. It should be stressed that no single 

approach will provide all of the information necessary 

for the desired level of understanding of the infectious 

processes. Each approach, sometimes in combination 

with one or another approach, will provide superior 

results in some cases but not in others. Thus, it will be 

the collective efforts of many investigators, using the 

diversity of established as well as novel approaches, 

that we will achieve our ultimate goal to fully 

understand the mechanisms of Salmonella persistence, 

transmission, infectivity and pathogenesis. Elucidating 

the bacterial genes expressed in the host and those 

underlying typhoid pathogenesis should lead to the 

development of new strategies including novel anti-

bacterial treatments and identification of novel vaccine 

candidates to control the disease. 
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