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Abstract 
Three great plague pandemics caused by the gram-negative bacterium Yersinia pestis have killed nearly 200 million people and it has been 

linked to biowarfare in the past. Plague is endemic in many parts of the world. In addition, the risk of plague as a bioweapon has prompted 

increased research to develop plague vaccines against this disease. Injectable subunit vaccines are being developed in the United States and 

United Kingdom.  However, the live attenuated Y. pestis-EV NIIEG strain has been used as a vaccine for more than 70 years in the former 

Soviet Union and in some parts of Asia and provides a high degree of efficacy against plague.  This vaccine has not gained general 

acceptance because of safety concerns.  In recent years, modern molecular biological techniques have been applied to Y. pestis to construct 

strains with specific defined mutations designed to create safe, immunogenic vaccines with potential for use in humans and as bait vaccines 

to reduce the load of Y. pestis in the environment.  In addition, a number of live, vectored vaccines have been reported using attenuated viral 

vectors or attenuated Salmonella strains to deliver plague antigens. Here we summarize the progress of live attenuated vaccines against 

plague. 
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Introduction 

Yersinia pestis, the causative agent of plague, is 

an aerobic, non-motile, gram-negative bacillus 

belonging to the family Enterobacteriaceae. Plague 

is a zoonotic infection transmitted to humans most 

commonly via the bite of an infected flea, typically 

Xenopsylla cheopis [1].  Natural reservoirs of Y. 

pestis include rodents, squirrels, and prairie dogs. 

Large reservoirs of Y. pestis still exist on all major 

inhabited continents, except Australia [2] and it still 

remains a serious public health threat in those regions 

[2,3].  Plague was responsible for at least 3 great 

pandemics and killed nearly 200 million people [2] at 

times when the global human population was likely 

far less than one billion. Current epidemiological 

records suggest 4,000 human plague cases annually 

worldwide [4]. Three clinical forms of human plague 

exist: bubonic, septicemic, and pneumonic [5].  Y. 

pestis cells spread from the site of the infected flea 

bite to the regional lymph nodes, grow to high 

numbers causing the formation of a bubo, and spill 

into the blood-stream where bacteria are removed in 

the liver and spleen.  Growth continues in the liver 

and spleen, spreads to other organs, and causes a 

septicemia.  Fleas feeding on septicemic animals 

complete the infection cycle.  Humans, highly 

susceptible to plague, are accidental hosts through 

close contact with animal reservoirs. In humans 

bubonic plague can develop into an infection of the 

lung (secondary pneumonic plague); this can lead to 

aerosol transmission (primary pneumonic plague) [2, 

6].     

In addition to the potential for natural infections, 

Y. pestis is considered to be among the top five 

potential biological weapons [7].  One of the earliest 

recorded biological warfare attempts using plague 

was by Tartar forces, laying siege to 14th-century 

Kaffar (now called Feodosia, Ukraine), who 

catapulted their plague victims into the city in an 

attempt to start an epidemic among the defending 

forces. During World War II, Japanese forces 

released plague-infected fleas from aircraft over 

Chinese cities.  More recently, an Ohio man with 

extremist connections tried to obtain Y. pestis from 

the American Type Culture Collection [7,8,9,10,11]. 

Other evidence suggests that Y. pestis was being 

developed for potential biological warfare use in the 

former Soviet Union [7,8,9,10,11] as well as in the 

US and in Great Britain.  Plague remains an 

important bioterrorism  
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threat because the organism can be easily obtained 

from any of the numerous and widely dispersed 

animal reservoirs of plague [2]. Additionally, Y. 

pestis is easily genetically manipulated to create 

strains with specific engineered traits, such as 

constructing Y. pestis strains resistant to multiple 

antibiotics often used to treat plague patients.  

 Therefore, there is an urgent need for effective 

means of pre-exposure and post-exposure 

prophylaxis. Owing to the short incubation period, 

treatment with antibiotics, and possibly monoclonal 

antibodies and drugs inhibiting mediators of 

pathogenicity, offer the best prospect for post-

exposure prevention of disease. However, Y. pestis 

strains resistant to multiple drugs have been isolated 

from plague patients in Madagascar, which may 

spread multiple antibiotic resistance encoding genes 

to plague reservoirs [12,13].  For longer-term 

protection and to counter drug resistance, vaccination 

is believed to be crucial [14,15].  There is currently 

no licensed vaccine for use in the United States and 

the lack of a safe, effective vaccine for human use 

puts both military personnel and the general public at 

risk.  Here, we briefly summarize recent progress in 

the development of injectable vaccines, which has 

been recently described in more detail elsewhere 

[14,15,16,17,18].  Live vaccines have a number of 

advantages over injectable vaccines including 

mucosal delivery (needle-free); stimulation of 

cellular, humoral and mucosal immunity; and low 

cost [19]. Furthermore, they can be formulated to 

preclude the need for refrigeration (e.g. cold chain) 

[20,21]. Our primary focus here is therefore to 

describe progress in the development of live vaccines 

for plague.   

 

Killed whole-cell vaccine and subunit 
vaccines   

Plague Vaccine (USP), which was licensed for 

human use in the United States and the United 

Kingdom, has not been available in the US since 

1999. However, USP vaccine is still used for research 

in the UK [22,23].  Controlled clinical trials have not 

been reported, but studies of United States military 

personnel during the Vietnam War strongly suggest 

that formalin-killed, whole-cell vaccines protect 

against bubonic plague [24,25]. However, these 

vaccines cause significant adverse reactions, 

particularly after booster injections, which are needed 

to maintain protection [5]. Moreover, they generally 

fail to protect mice and non-human primates against 

pulmonary Y. pestis challenge, and several humans 

contracted pneumonic plague despite immunization 

with this vaccine [17,24,26,27]. Thus killed whole 

cell vaccines are probably not suitable for defense 

against weaponized pneumonic plague. 

Recent efforts to create a safe and effective 

plague vaccine have focused on the development of 

recombinant subunit vaccines that elicit antibodies 

against two well-characterized Y. pestis antigens, the 

F1 capsule and the virulence protein LcrV [28,29,30, 

31].  While there has been some controversy 

surrounding the efficacy of subunit vaccines in some 

non-human primates [18], several candidates are 

currently moving toward licensure.  The usefulness 

of F1 as a protective antigen is not clear, since F1- 

strains can cause plague (see below).  Currently, the 

recombinant F1V (rF1V) being developed at DynPort 

Vaccine Company is in a Phase 2b clinical trial 

(www.clinicaltrials.gov). In addition, the rV10 

vaccine (truncated recombinant LcrV protein) is 

currently undergoing US Food and Drug 

Administration pre-Investigational New Drug 

authorization review for a future phase I trial [16].  

 
Live vaccines  

In the process of attenuation, an infectious agent 

is altered so that it becomes harmless or less virulent, 

while retaining its ability to interact with the host and 

stimulate a protective immune response [32]. There 

are many examples of successful live attenuated 

vaccines delivered by injection, including the current 

bacterial vaccine for tuberculosis (BCG) [33] and 

viral vaccines for measles, mumps, rubella, chicken 

pox and yellow fever [34]. Rabies vaccines are now 

available in two different attenuated forms, one for 

use in humans, and one for animals [35].  There are 

also a number of mucosally delivered live vaccines.  

These include oral vaccines against poliovirus [36], 

cholera [37], rotavirus [38] and typhoid fever [37,39] 

and the nasally delivered vaccines against influenza 

[40,41,42].  

Most pathogens gain entry to the host via 

mucosal surfaces [43,44]. Thus, parenterally 

administered vaccines, which may be limited in their 

capacity to induce mucosal immune responses, may 

not be the most appropriate form of vaccination for 

many infections. In contrast, mucosally delivered 

vaccines have the potential for inducing both 

systemic and mucosal immunity. Ideally delivered by 

the oral or intranasal (i.n.) route, such vaccines also 

offer the advantage of being easier and safer to 

administer than needle-based delivery [45].  

Therefore, live attenuated vaccines have advantages  
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over subunit vaccines as they are typically taken 

orally, still inducing strong mucosal and durable 

immunity [44,46].  In addition, they are often less 

expensive to manufacture than subunit vaccines.  The 

major disadvantages of live vaccines include 

inadequate attenuation, particularly in the case of 

immunocompromised individuals and the potential to 

revert to virulence.  However, application of modern 

molecular techniques in conjunction with a detailed 

understanding of the virulence attributes of the 

delivery vector or, in some cases, of the pathogen 

itself prior to attenuation, make the latter unlikely in 

a well-characterized rationally attenuated vaccine.  

Thus development of live vaccines against plague at 

this time represents an underutilized strategy for 

preventing this disease.  

 

Virally vectored live plague vaccines 
Replication-deficient adenovirus (Ad) vectors are 

excellent candidates for vaccine platforms as they 

transfer genes effectively to antigen-presenting cells 

(APCs) in vivo, with consequent activation of APCs, 

thus conveying immune adjuvant properties and 

inducing strong, rapid humoral and cellular immune 

responses against the transgene product [47,48,49].  

Crystal’s group developed a replication-deficient 

adenovirus (Ad) gene-transfer vector encoding V 

antigen and demonstrated that a single injection of 

the recombinant virus elicited strong anti-LcrV serum 

antibody responses, LcrV-specific CD4+ and CD8+ 

responses, and protective immunity against an 

intranasal Y. pestis challenge [50,51].  In a 

subsequent study, they fused either F1 or LcrV to the 

adenovirus capsid protein, pIX [50,51].  Both 

constructs elicited strong humoral immunity in mice 

immunized intramuscularly with greater efficacy than 

an injection of adjuvanted purified V or F1.  

Rose’s group devised a vaccine utilizing 

recombinant vesicular stomatitis virus (VSV) vectors 

expressing the Y. pestis lcrV gene [52,53].   Two 

intranasal doses elicited high titers of anti-LcrV IgG 

and protected immunized mice against intranasal 

challenge.  In a follow-up study, the virus was 

modified to encode a secreted form of LcrV [52,53].  

A single intramuscular dose of 109 PFU was 

sufficient to protect 90% of the immunized mice 

from a lethal Y. pestis challenge.  The secreted LcrV 

was a more potent vaccine than the previous vaccine 

that encoded the non-secreted form. Furthermore, 

protection was dependent on CD4+ but not CD8+ 

cells and correlated with increased anti-LcrV 

antibody and a bias toward IgG2a and away from 

IgG1 isotypes [52,53].  Another group demonstrated 

the suitability of a vaccinia viral vector expressing 

either lcrV or caf1 (gene for F1) and found it to be 

highly immunogenic in BALB/c mice and safe in 

immunocompromised SCID mice [54,55].  

In a provocative study, Barton et al. reported that 

latent infection of mice with either murine 

gammaherpesvirus 68 or murine cytomegalovirus 

results in an increased resistance to both intranasal 

and subcutaneous infection with either Listeria 

monocytogenes or Y. pestis [56]. Latency-induced 

protection is not antigen specific but involves 

prolonged production of the antiviral cytokine 

interferon-γ and systemic activation of macrophages, 

which upregulates the basal activation state of innate 

immunity against lethal challenge of plague [56].  

While it is not clear whether this observation can be 

translated into a proactive approach to provide 

immunity against plague, it is an interesting 

observation that deserves further thought and 

consideration when evaluating any vaccine. 

There have been a number of recent reports 

describing studies to develop viral-vectored bait 

vaccines to be used to control environmental sources 

of plague. One group has constructed a recombinant 

vaccinia virus to direct synthesis of an F1-V fusion 

protein with promising results [54,55].  Orally 

immunized mice developed high serum antibody 

titers against the F1-V antigen and achieved 90% 

protection against a challenge of 10 LD50 of Y. pestis.   

Workers at the United States Geological Survey’s 

National Wildlife Health Center have been 

developing a recombinant raccoon poxvirus (RCN) 

that directs synthesis of the F1 antigen (herein 

designated RCN-F1) as a bait vaccine to protect 

prairie dogs (Cynomys spp.).  Prairie dogs are highly 

susceptible to Y. pestis.  In initial studies, the vaccine 

protected mice from virulent plague challenge [57] 

and black-tailed prairie dogs (Cynomys ludovicianus) 

vaccinated intramuscularly with RCN-F1 survived 

subcutaneous challenge with virulent Y. pestis [58].   

To provide a more practical approach for field 

vaccination, the RCN-F1 vaccine was incorporated 

into palatable, edible bait and offered to black-tailed 

prairie dogs.  Antibody titers against Y. pestis F1 

antigen increased significantly in vaccinated animals, 

and their survival was significantly higher upon 

challenge with Y. pestis than that of negative controls 

[58,59], demonstrating that oral bait immunization of 

prairie dogs can provide protection against plague. 
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Live bacterially vectored plague vaccines 
The commensal, non-pathogenic bacterium 

Lactococcus lactis has been used to deliver LcrV 

[60,61] with some success.  However, most of the 

studies examining the use of live bacterially vectored 

vaccines for plague, including work in our laboratory, 

have focused on exploiting live attenuated 

Salmonella to deliver Y. pestis antigens.  Live 

attenuated Salmonella have attracted considerable 

attention as vectors for the delivery of a variety of 

heterologous vaccine antigens. After delivery by the 

oral route the bacteria enter the intestinal sub-

epithelium via M-cells and are trafficked via 

mesenteric lymph nodes to fixed macrophages in the 

spleen and liver [62,63,64]. This colonization 

pathway results in the induction of mucosal and 

systemic immune responses.  Table 1 summarizes a 

number of recent studies utilizing live attenuated 

Salmonella vaccines to deliver Y. pestis antigens. 

With a few exceptions, all the studies listed in 

Table 1 used Salmonella to deliver F1, LcrV or both.  

Titball’s group has done numerous studies in this 

area, constructing strains that produce F1-V fusion 

protein [65], LcrV [66] and F1 capsule on the surface 

of the cell [67].   Pascual’s group took the effort one 

step further and constructed a Salmonella strain that 

produced F1 as an extracellular capsule and LcrV as 

a soluble cytoplasmic protein [68].  In all of these 

studies, S. Typhimurium vaccine strains synthesizing 

F1 and/or LcrV or fragments of LcrV were 

demonstrated to elicit humoral and/or cellular 

immunity against the vectored antigen and to provide 

some level of protective immunity against either 

subcutaneous and/or intranasal challenge with Y. 

pestis.  Interestingly, some authors noted that 

immunization with attenuated Salmonella alone (no 

Y. pestis antigens) could provide a low level of 

protection [67,69,70], indicating that the use of 

Salmonella as a plague vaccine may provide an 

additional benefit.  

A few studies have also described S. Typhi 

constructs as candidates for human vaccines.  In one 

study, an S. Typhi strain synthesizing capsular F1 

was demonstrated to elicit protective immunity when 

used to intranasally immunize mice [71].  A similar 

vaccine strain was administered intranasally to 7-day 

old mice [72].  Immunized mice developed mucosal 

antibody and IFN- secreting cells and were 

efficiently primed for a later injection of F1 plus 

alum adjuvant. The Salmonella vaccine provided 

more potent priming than an F1 plus alum prime, 

demonstrating the potential for using a Salmonella-

vectored plague vaccine in a prime boost scenario.   

Our philosophy with regard to Salmonella-

vectored vaccines for plague is that F1 and LcrV, 

while highly effective in laboratory models, may not 

be sufficient to protect against all strains of Y. pestis.  

For example, non-encapsulated (F1 negative) Y. 

pestis mutants can cause chronic, lethal infections in 

laboratory rats and mice [73,74].  However, the 

relevance of these observations has been brought into 

question by a recent study showing that the impact of 

the F1 capsule on Y. pestis virulence depends on the 

strain and genotype of mouse used for testing [75].  

On the other hand, this concern appears to be relevant 

to humans as an F1 negative strain of Y. pestis has 

been implicated in an acute fatal human infection 

[76].  Additionally, there are known polymorphisms 

of LcrV that may influence protective efficacy [77]. 

Therefore, using only two antigens for presentation 

by Salmonella might be insufficient to combat 

weaponized or naturally occurring Y. pestis, leading 

us to evaluate additional antigens.  In addition to 

LcrV, our group has used Salmonella to vector three 

other Y. pestis antigens, Psn [70], HmuR [70] and 

PsaA, also called pH 6 antigen [78], which forms a 

fibrillar structure on the Y. pestis cell surface [79].  

Psn and HmuR are outer membrane proteins involved 

in iron acquisition [80,81]. The role of PsaA in 

virulence is not clear [82,83,84], but available data 

indicates it may serve as an adhesin [85] and an 

antiphagocytic factor [86].  We demonstrated that 

Salmonella delivering Psn elicited significant 

protective immunity against subcutaneous challenge 

[70].  We observed partial protection against 

intranasal challenge, although this did not achieve 

statistical significance.  PsaA was highly 

immunogenic, eliciting strong serum IgG and 

mucosal IgA antibodies.  However, immunized mice 

were not protected from subcutaneous challenge and, 

similar to what we observed with Psn, some 

immunized mice were protected from intranasal 

challenge, but the result was not statistically 

significant [79].  When delivered by our Salmonella 

strains, HmuR was poorly immunogenic and did not 

confer protection against either challenge route [70].  

 

Live attenuated Yersinia vaccines 
Attenuated Y. pestis strains that effectively 

protected albino mice against experimental plague 

were developed in 1895 by Yersin and in 1903-1904 

by Kolle and Otto, but were not tested in humans 

owing to fears of reversion to virulence. The first 
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vaccination of humans with live plague vaccine was 

done in Manila, Republic of the Philippines, in 1907, 

but reliable evidence of its efficacy was not obtained 

as there were no plague cases in the city at that time 

[87]. Subsequently, the EV76 strain, a spontaneous 

pgm mutant, was developed from the EV strain 

isolated by Girard and Robic from a human case of 

bubonic plague in Madagascar in 1926 [88]. In 1936, 

a subculture of the EV76 vaccine strain was 

established at the NIIEG (designation based on the 

Russian abbreviation of the Scientific-Research 

Institute for Epidemiology and Hygiene, Kirov, 

Russian Federation) in the former USSR [88]. This 

strain was employed for the development of the live 

vaccine designated as EV NIIEG, which was 

manufactured in the USSR from 1940 [89]. The EV 

NIIEG strain has been used as a live plague vaccine 

for the protection of plague researchers and people 

living in territories endemic for plague in the 

countries of the former USSR and some Asian 

countries and is still in use today [17,89]. 

Nevertheless, a single dose of the EV NIIEG live 

vaccine conferred a prompt (day 7 post-vaccination) 

and pronounced immunity in vaccinees lasting for 10 

to 12 months against bubonic and, to some extent, 

pneumonic plague [15,89]. 

However, EV76 vaccine strain can cause disease 

in some non-human primates, raising questions about 

its suitability as a human vaccine [90]. This live 

Pgm− strain conferred greater protection against 

bubonic and pneumonic plague than killed vaccines 

in animals, but it sometimes caused local and 

systemic reactions [23,26,90,91].  In addition, a live 

Pgm− strain retains virulence when administered by 

the intranasal (i.n.) and intravenous (i.v.) routes 

[18,90,92]. Variable virulence of the live vaccine 

strains in animal models and reactogenicity in 

humans has prevented this vaccine from gaining 

worldwide acceptance, especially in the US and 

Europe [24,93].  Although licensing live attenuated 

Y. pestis as a vaccine will undoubtedly be a long and 

arduous process, it does not extinguish researchers’ 

passion to explore new attenuated Y. pestis mutants 

as vaccines. In Salmonella enterica, some attenuated 

mutants have proven to be highly effective vaccines 

[94,95,96].  Therefore, mutations that effectively 

attenuate Salmonella, such as aroA, phoP, htrA and 

lpp genes, were introduced into Y. pestis but those 

mutations had only a limited effect on Y. pestis 

virulence [97,98,99,100]. In addition, a deletion of 

the Y. pestis global regulator gene rovA was tested 

and its impact on virulence was also inadequate for 

use as a vaccine [84]. Table 2 lists recent 

developments of live, rationally attenuated Y. pestis 

mutants as vaccines against plague.  

In Salmonella, ∆relA ∆spoT mutants are 

attenuated [101] and crp mutants are attenuated and 

immunogenic [102].  It has also been established that 

Y. pestis crp mutants are attenuated for virulence 

[103].  In our laboratory, we examined the vaccine 

potential of Y. pestis ∆relA ∆spoT [104] and ∆crp 

mutants [105].  The ∆relA ∆spoT mutant was 

partially attenuated (subcutaneous LD50 = 5 x 105 

CFU, parent strain LD50 = 10) and protective against 

bubonic plague (subcutaneous challenge [s.c.]), but 

poorly protective against pneumonic plague 

(intranasal challenge).  The ∆crp mutant was 

completely attenuated (s.c. LD50 > 107 CFU) and 

partially protective against both bubonic and 

pneumonic plague [105].  

We have developed a system in Salmonella 

termed regulated delayed attenuation, in which the 

bacterium is modified such that virulence gene 

expression is dependent on the presence of arabinose 

and/or mannose.  When cells are grown in the 

presence of arabinose, the virulence gene is 

expressed.  Once the cells invade host tissues where 

free arabinose is not available, virulence gene 

expression ceases and the cells become attenuated 

[106].   We applied this strategy to Y. pestis, 

constructing a strain with crp under transcriptional 

control of the araC PBAD promoter [105].   The 

resulting strain was partially attenuated (LD50 = 4.3 x 

105 CFU) and protective against both bubonic and 

pneumonic plague. 

One strategy used by Y. pestis to evade the host 

immune system is to produce lipid A that is not 

recognized by toll-like receptor 4 (TLR4). This is 

accomplished due to the temperature-regulated 

expression of a key gene in the acylation pathway, 

lpxP, which results in hexa-acylated lipid A at 28oC.  

At 37oC, the body temperature of mammalian hosts, 

lpxP is not expressed, resulting in tetra-acylated lipid 

A, which is not recognized by TLR4 [107] that 

preferentially recognizes hexa-acylated lipid A 

[108,109,110].  In 2006, Montminy et al. reported 

that a Y. pestis strain engineered to produce hexa-

acylated lipid A at 37oC by constitutive expression of 

the E. coli lpxL gene from a multicopy plasmid is 

attenuated [111].   We exploited this observation to 

reduce the residual virulence of our arabinose-

regulated crp strain by constructing a strain that 

expresses E. coli lpxL from the chromosome, 

providing greater genetic stability than plasmid 
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expression.  The resulting strain, χ10030(pCD1Ap), 

produces hexa-acylated lipid A at 37oC and carries 

the arabinose-regulated crp gene [112].   Our results 

demonstrated an increase in the LD50 of 

χ10030(pCD1Ap) by s.c. and i.n. inoculation of more 

than 1.5 x107 and 3.4 x 104-fold, respectively, in 

Swiss Webster mice, compared to the wild-type 

virulent Y. pestis KIM6+(pCD1Ap) strain.  Both s.c. 

and i.n. immunization with strain χ10030(pCD1Ap) 

induced significant protection against both bubonic 

and pneumonic plague with minimal reactogenicity 

in mice, attributes consistent with our goal of 

designing a live safe Y. pestis vaccine.  However, this 

strain was still able to induce IL-10 early in infection, 

a known strategy used by Y. pestis to evade detection 

by the host [113].  Also, due to safety concerns 

surrounding a live plague vaccine, we consider it 

prudent to identify and include an attenuating 

deletion mutation in our final vaccine.  Therefore, we 

plan to enhance the safety and efficacy of 

χ10030(pCD1Ap) by including a yet to be identified 

deletion mutation and eliminating its ability to elicit 

IL-10 early in infection.  

Other mutations that affect genes specific for 

Yersinia have also been examined as a basis for 

attenuating Y. pestis.  Of note, a Y. pestis ∆yopH 

mutant is attenuated and provides a high level of 

protection against bubonic and pneumonic plague in 

mice [114]. Flashner et al. conducted a study to 

identify Y. pestis mutants as vaccine candidates and 

identified pcm and ∆nlpD mutants that were 

attenuated and elicited protective immunity 

[115,116]. Identification of other attenuating 

mutations that target unique Y. pestis virulence genes 

will be of significant interest for developing safe 

attenuated Y. pestis vaccines. 

Y. pseudotuberculosis, a recent ancestor of Y. 

pestis [117], is much less virulent and typically 

causes an enteric disease that is rarely fatal.  Its 

lifestyle as an enteric pathogen should facilitate its 

use as an oral vaccine. With the exception of two 

additional plasmids carried by Y. pestis (pPCP1 and 

pMT1), the two species share more than 95% genetic 

identity and a common virulence plasmid with a 

conserved co-linear backbone [118].  Based on these 

similarities, the use of avirulent Y. 

pseudotuberculosis strains as a plague vaccine has 

been explored.  Oral immunization with attenuated Y. 

pseudotuberculosis strains stimulates cross-immunity 

to Y. pestis and provides partial protection against 

pulmonary challenge with Y. pestis [119,120,121].  

While protection was not robust it was significant, 

demonstrating the feasibility of using this approach. 

As an enteric pathogen, a live attenuated Y. 

pseudotuberculosis-based vaccine can be given 

orally, making it a suitable choice to be made into 

bait for administration to wild animals to reduce 

naturally occurring plague reservoirs. 

 

Summary 
Subunit vaccines based on rF1 and rV antigens 

are the most promising prospects and have passed 

through Phase I and II clinical trials and into the 

licensing process. Although direct determination of 

efficacy is not possible due to ethical considerations, 

human immune responses to subunit plague vaccine 

have shown good correlation with macaque and 

mouse immune responses [122].  Since Y. pestis is 

easily genetically manipulated to create strains with 

specific engineered traits which lack highly 

immunogenic traits irrelevant to human pneumonic 

disease (e.g., the F1 capsule) or by reengineering 

some major virulent factors with known functional 

polymorphisms, such as LcrV, subunit vaccines 

might fail to protect against cleverly engineered Y. 

pestis strains.  Previously tested killed whole-cell 

preparations or live-attenuated plague vaccines are 

currently not favored in the United States because of 

safety and efficacy concerns, but live, rationally 

attenuated strains of Y. pestis have been shown in 

animal models to provide strong protection against 

both bubonic and pneumonic plague.  Modern live Y. 

pestis vaccines should elicit humoral and cellular 

immune responses against a variety of relevant 

antigens, providing stronger protection against 

weaponized Y. pestis than vaccines based on only one 

or two antigens.  Therefore, we recognize the 

importance of continuing research toward the 

development of new, improved live-attenuated 

vaccines [14,123]. 

Plague is a zoonotic disease and its reservoirs 

exist in wild rodent populations on the continents of 

Africa, Asia, South America, and North America 

[124]. While bubonic plague is primarily a disease of 

rodents that is spread by fleas in nature, humans are 

occasionally infected either by flea bite or by 

inhalational exposure, usually through a secondary 

host, for example, a wild rabbit or prairie dog or 

domestic cat or, rarely, through another infected 

person [2]. Plague sero-prevalence also indicated that 

wild animals are involved in the persistence and 

transmission of Y. pestis [125,126,127,128,129,130] 

so lowering the incidence of plague infections in wild 

animals would likely reduce zoonotic transmission of 
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the disease to humans. Therefore, palatable baits 

containing live vaccines for oral immunization to 

reduce infection of wild animals are alternative 

method to control plague epidemics.  

 
Memorial addendum  
We dedicate our review to the memory of our dear friend and 

colleague, Professor Gianfranco Del Prete, who made many 

notable contributions to our understanding of host immune 

responses to bacterial and parasite pathogens and who frequently 

contributed to our discussions on those topics and in regard to our 

mutual interest in vaccines against Yersinia pestis. 
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