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Abstract 
T-cell responses are crucial for the outcome of any infection. The type of effector T-cell reaction is determined by a complex interaction of 

antigen-presenting cells with naive T cells and involves genetic and environmental factors, including the type of antigen, cytokines, 

chemokines, co-stimulatory molecules, and signalling cascades. The decision for the immune response to go in a certain direction is based 

not on one signal alone, but rather on many different elements acting both synergistically and antagonistically, and through feedback loops 

leading to activation or inhibition of T cells. In the course of evolution different types of T cells have developed, such as T helper 1 (Th1) 

cells, which protect against intracellular bacteria; Th2 cells, which play a role against parasites; and Th17 cells, which face extracellular 

bacteria and fungi. 
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Introduction 

In all infectious diseases, besides the virulence of 

the pathogen, both the natural and the specific 

immune responses of the host are crucial for 

determining the outcome of the infection. The 

immune system has evolved different defence 

mechanisms against pathogens.  The first defensive 

line is provided by “natural” immunity, including 

phagocytes, T cell receptor (TCR) +  T cells, 

natural killer (NK) cells, mast cells, neutrophils and 

eosinophils, as well as complement components and 

pro-inflammatory cytokines, such as interferons 

(IFNs), interleukin (IL)-1, IL-6, IL-12, IL-18 and 

tumor necrosis factor (TNF)-α. The more specialized 

TCR+  T lymphocytes provide the second defence 

wall. These cells account for the specific  immunity, 

which results in specialized types of immune 

responses which allow vertebrates to recognize and 

clear (or at least control) infectious agents in different 

body compartments. Viruses growing within infected 

cells are face the killing of their host cells by CD8+ 

cytotoxic T cells.  Most microbial components are 

endocytosed by antigen-presenting cells (APC), 

processed and presented preferentially to CD4+ T 

helper (Th) cells. Th cells co-operate with B cells for 

the production of antibodies which opsonize 

extracellular microbes and neutralize their exotoxins. 

This branch of the specific Th cell-mediated immune 

response is known as humoral immunity. Other 

microbes, however, survive within macrophages in 

spite of the unfavorable microenvironment and 

antigen-activated CD4+ Th cells are required to 

activate macrophages, whose reactive metabolites 

and IFN- finally lead to the destruction of the 

pathogens. This branch of the specific Th cell-

mediated response is known as cell-mediated 

immunity (CMI) [1,2].  

Most successful immune responses involve both 

humoral and cell-mediated immunity, but in some 

conditions the two types of effector reactions tend to 

be mutually exclusive.  CD4+ Th cells can develop 

different polarized patterns of cytokine production , 

such as type-1 or Th1, type-2 or Th2, type-17 or 

Th17  [3-5]. Furthermore, in the last decade the 

existence of regulatory T cells has been demonstrated 

and they have been named Treg.  Treg cells devoted 

to control immune responses to self-antigens are 

defined as “natural Treg cells”, including natural 

killer T (NKT) and CD4+CD25+Foxp3+ T cells. 

NKT cells represent a distinct population of T cells 

showing properties of NK cells, but expressing α/β 

TCR, which specifically recognizes glycolipids often 
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expressed by pathogens and tumour cells [6]. NKT 

secrete large amounts of IL-4, IL-10, IFN-γ and 

transforming growth factor-β (TGF-β). It is generally 

accepted that Foxp3 is a master control gene for the 

development and function of natural CD4+CD25+ 

Tregs, and there is no doubt that 

CD4+CD25+Foxp3+ T cells originate from the 

thymus as a distinct T cell subset [7,8], which is 

mainly devoted to control self-reactive T cells that 

have escaped negative selection, thus ensuring 

peripheral tolerance to autoantigens and protecting 

the host from autoimmunity. However, the 

mechanism by which natural Tregs exert their 

suppressive activity is still elusive. Nevertheless, it 

must be noted that the T helper classification is in 

continual revision given that new T-cell subsets are 

being discovering dailyy by day, such as Th3 and IL-

9-producing Th9 cells. 

 

The Th network 
Th1 cells produce IFN-γ, IL-2 and TNF-α, as 

well as elicit macrophage activation and delayed-type 

hypersensitivity (DTH) reactions, whereas Th2 cells 

produce IL-4, IL-5, IL-10 and IL-13, which act as 

growth/differentiation factors for B cells, eosinophils 

and mast cells and inhibit several macrophage 

functions [4,9]. A similar heterogeneity in the 

cytokine profile was observed also in CD8+ cytotoxic 

T cells (Tc1, Tc2), + T cells and NK cells [10, 11]. 

A new subset of Th cells, named Th17 cells, 

producing IL-17 alone or in combination with IFN-γ, 

has been identified recently [12].   Th17 cells may 

also secrete IL-6, IL-22 and TNF-α and play a critical 

role in protection against microbial challenges, 

particularly extracellular bacteria and fungi [13].  

Most T cells do not express a polarized cytokine 

profile; such T cells (coded as Th0) represent a 

heterogeneous population of partially differentiated 

effector cells consisting of multiple subsets which 

secrete different combinations of both Th1 and Th2 

cytokines [14-16]. The cytokine response at the 

effector level can remain mixed or further 

differentiate into the Th1, the Th2 or the Th17 

pathway under the influence of polarizing signals 

from the microenvironment.  Human Th1 and Th2 

cells also differ for their responsiveness to cytokines. 

Both Th1 and Th2 cells proliferate in response to IL-

2, but Th2 are more responsive to IL-4 than Th1; on 

the other hand, IFN-γ tend to inhibit the proliferative 

response of Th2 cells [17].  

Th cells substantially differ for their cytolytic 

potential and mode of help for B-cell antibody 

synthesis. Th2 clones, usually devoid of cytolytic 

activity, induce IgM, IgG, IgA, and IgE synthesis by 

autologous B cells in the presence of the specific 

antigen, with a response which is proportional to the 

number of Th2 cells added to B cells. In contrast, 

Th1 clones, most of which are cytolytic, provide B-

cell help for IgM, IgG, IgA (but not IgE) synthesis at 

low T-cell/B-cell ratios. At high T-cell/B-cell ratios 

there is a decline in B-cell help related to the Th1-

mediated lytic activity against antigen-presenting 

autologous B-cells [18]. Th1 and Th2 cells exhibit 

different abilities to activate monocytic cells. Th1, 

but not Th2, help monocytes to express tissue factor 

(TF) production and procoagulant activity. In this 

type of Th cell-monocyte co-operation, both cell-to-

cell contact with activated T cells and Th1 cytokines 

(namely IFN-γ), are required for optimal TF 

synthesis, whereas Th2-derived IL-4, IL-10 and IL-

13 are strongly inhibitory [19]. 

  The factors responsible for the Th cell 

polarization into a predominant Th profile have been 

extensively investigated. Current evidence suggests 

that Th1, Th2 and Th17 cells develop from the same 

Th-cell precursor under the influence of mechanisms 

associated with antigen presentation [20,21]. Both 

environmental and genetic factors influence the Th1 

or Th2 differentiation mainly by determining the 

“leader cytokine” in the microenvironment of the 

responding Th cell. IL-4 is the most powerful 

stimulus for Th2 differentiation, whereas IL-12, IL-

18 and IFNs favour Th1 development [22-26]. A role 

has been demonstrated for the site of antigen 

presentation, the physical form of the immunogen, 

the type of adjuvant, and the dose of antigen [27]. 

Several microbial products (particularly from 

intracellular bacteria) induce Th1-dominated 

responses because they stimulate IL-12 production. 

IFN- and IFN- favour Th1 development by 

enhancing IL-12 secretion by macrophages and 

maintaining the expression of functional IL-12 

receptors on Th cells [28]. On the other hand, IL-11 

and PGE2 promote Th2 cell polarization [29,30]. 

Th17 cells represent a distinct subset of effector T 

cells induced as a consequence of IL-23 production 

by DCs [31]. IL-23 is a heterodimer that shares the 

p40 chain with IL-12, but differs in the presence of a 

p19 instead of the p35 chain. Similar subunit sharing 

occurs for the IL-12R and the IL-23R: the IL-12R is 

a heterodimer composed of β1 and β2 chains, 

whereas the IL-23R contains the β1 chain but in 

combination with a specific receptor known as IL-

23R [32]. 
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  Both in vitro differentiation of Th17 cells and 

in vivo Th17-mediated inflammation are dependent 

on the transcription factor retinoic acid receptor-

related orphan receptor γ-t (RORγt) [33]. Some 

microbial products and stimuli induce a preferential 

activation of Th17 responses [21,34].   

 
The response in infectious diseases  

Cytokine production occurs during immune 

responses and can be detected in a variety of 

infectious or immunopathological disorders [35]. In 

most human infections, specific immunity is of 

crucial importance, but an inappropriate response 

may not only result in lack of protection, but even 

contribute to the induction of immunopathology. In 

human leishmaniasis, lack of IFN-γ and high IL-4 

production predict progression into fulminant visceral 

disease, whereas individuals whose cells produce 

large amounts of IFN-γ usually remain asymptomatic 

[36]. Th1 cytokine mRNA signals were found in the 

skin of patients with localized and mucocutaneous 

leishmaniasis, whereas Th2 cytokine mRNA were 

highly expressed in the skin of patients with 

destructive forms of cutaneous or active visceral 

Figure 1. T-cell response in infectious diseases 

Once T helper (Th) cell recognizes a certain 

antigen presented by antigen-presenting cell 

(APC), the cytokine milieu plays a crucial role in 

driving the subsequent T-cell response. In the 

presence of interferons (IFNs) and interleukin 

(IL)-12 naive Th cells differentiate into Th1 cells 

(producing IFN-γ and tumor necrosis factor 

(TNF)-α) that are protective mainly against 

intracellular bacteria. In the presence of IL-23, 

IL-1 naive Th cells differentiate into Th17 cells 

(producing IL-17, IL-21 and IL-22) that are 

involved in protection against extracellular 

bacteria and fungi. In the presence of IL-4 naive 

Th cells differentiate in Th cells (mainly 

producing IL-4 and IL-5) that are protective 

against extracellular parasites.  
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disease [37]. Interestingly, IFN-γ in combination with 

pentavalent antimony was effective in treating severe 

or refractory visceral leishmaniasis [38]. 

Parasitic infections, characterized by eosinophilia 

and elevated IgE levels, usually elicit Th2 cytokines.  

Th2 responses, which down-regulate host protective 

Th1 functions, are less detrimental to parasites; on 

other hand, the host would avoid immuno-

pathological reactions related to strong, but harmful, 

Th1 responses.  The pathology resulting from 

Schistosoma mansoni infection is indeed 

predominantly caused by the host Th2 response 

leading to chronic granulomatous reaction and 

consequent damage to the intestine and liver [39,40]. 

In the immune response to bacterial infections, Th2 

cells seem to be appropriate opponents against toxin-

producing bacteria, since Th2 cytokines favour B-cell 

maturation and production of neutralizing antibodies. 

In contrast, intracellular bacteria (e.g. Leisteria 

monocytogenes, Mycobacteria, Salmonellae) are 

appropriately encountered Th1 cells, which produce 

cytokines able to activate macrophages and cytotoxic 

T cells. Mice with disrupted IFN-γ or IFN-γ receptor 

genes and producing high levels of IL-4 succumb to 

mycobacterial infections [41], whereas mice resistant 

to M. bovis produce high levels of IFN-γ and low 

amounts of IL-4 [42]. Likewise, patients with IFN-γR 

or IL-12R deficiency are extremely sensitive to 

mycobacterial infections and develop severe and 

often fatal disease [43,44].  The T-lymphocyte 

response to purified protein derivative (PPD) was 

evaluated at the clonal level in African patients with 

pulmonary tuberculosis (TB) before and after 

antimycobacterial therapy, as well as in healthy 

immune control subjects. In untreated patients, most 

PPD-specific T cells derived from either peripheral 

blood or pleural effusions showed a mixed Th0 

cytokine profile. After six months of therapy and 

clinical healing, most PPD-specific T cells showed a 

polarized Th1 profile. The Th1 polarization was less 

marked in tuberculosis patients who experienced 

treatment failure. The cytokine profile observed after 

successful therapy in patients with TB was similar to 

that found in healthy control subjects. The Th0/Th2-

biased response in African patients before therapy 

could be modulated in vitro by IFN- or IL-12, 

which induced a Th1 polarization of both PPD-

specific T cells. These results support the notion that 

active TB is associated with a predominant Th0 

response to mycobacterial antigens that could play a 

role in the pathogenesis of the disease. Adjunctive 

immunotherapy using Th1-polarizing cytokines could 

increase host defense against mycobacteria and 

accelerate healing, although clinical trials in which 

cytokines have been used for tuberculosis have been 

mostly unsuccessful [45]. 

Th0 cells, which secrete a combination of both 

Th2- and Th1-type cytokines, should be the best 

effector cells in the immune response to extracellular 

bacteria since antibodies (which neutralize 

adhesion/invasion and opsonize bacteria) and 

phagocytosis are both required.  The predominance 

of the Th1 or Th2 responses in any infectious disease 

is probably modulated by both the pathogen and the 

genetic background of the host, whose innate 

immunity plays a key role. Since bacteria possess 

several components which can trigger IL-12 

production by macrophages, it is not surprising that 

most of them favour Th1 development. These “Th1 

inducers”include the lipoarabinomannan of 

mycobacteria, teichoic acids of Gram-positive 

bacteria and lipopoly-saccharides of Gram-negative 

bacteria or viral polynucleotides [46]. In genetically 

predisposed individuals, some strong and persistent 

Th1 responses against bacteria may often result in 

immunopathological reactions, such as reactive 

arthritis following infection with Yersinia entero-

colitica  [47]. In H. pylori infection a polarized Th1 

response has been documented [48]. Furthermore, it 

has been demonstrated that the HP-NAP protein of H. 

pylori is the major factor promoting the Th1 response 

[49]. 

In Aspergillus fumigatus and Candida albicans 

infection and in Lyme arthritis, a strong Th17 

response has been documented and related to either 

protection or immunopathology [34,50,51].  

Furthermore, it has been recently demonstrated that 

the adenylate cyclase toxin of Bacillus anthracis is a 

potent promoter of Th17 cell development [52]. The 

toxin selectively targets specific signalling modules 

in the T-cell receptor (TCR) signaling cascade 

through its cyclic AMP (cAMP)-increasing activity, 

thereby promoting Th17 cell development. 

 
Concluding remarks 

The Th cytokine network provides a useful 

model for explaining both different types of 

protection and the pathogenetic mechanisms of 

several immunopathological disorders.  The 

development of polarized Th1, Th2 or Th17 

responses depends on both individual genetic 

background and environmental factors, especially 

cytokines of the natural immunity at the time of 

antigen presentation. Th1-dominated responses are 
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potentially effective in eradicating infectious agents, 

particularly those hidden within the host cells. Th17 

responses are indeed very useful for protection 

against fungi and extracellular pathogens.  When Th 

responses are exhaustively prolonged, host pathology 

may result. Thus Th cell pathways may represent 

important therapeutic targets for the prevention and 

treatment of  many  infectious diseases. 

 
Addendum 
Dedicated to our beloved Professor Gianfranco Del Prete. We are 

all indebted to our Professor for introducing us to the exciting 

world of immunology research. Throughout the years he has 

given us both the method and his passion for research. His 

research has never been theoretical but always oriented to 

people’s health, especially those suffering from neglected 

infectious and parasitic disease in developing countries.  
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