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Abstract 
Introduction: Host colonization by Candida species is an important predisposing factor to candidiasis, which seems to be more frequent in 

human immunodeficiency virus (HIV)-infected patients. Knowledge about the distribution, antifungal susceptibility, and virulence of oral 

Candida isolates is important for effective management of candidiasis. 

Methodology: Oral rinses were collected from 242 HIV-infected patients without clinical evidence of candidiasis seen at the AIDS referral 

center in Londrina, Brazil. Species were identified by standard phenotypic and molecular methods, and characterized in vitro according to 

antifungal susceptibility, cell surface hydrophobicity, biofilm formation, and enzyme activities. 

Results: Oral Candida colonization was detected in 50.4% of patients and combined use of antiretroviral therapy and protease inhibitor had a 

protective effect against colonization. Candida albicans (75.2%) was the most prevalent species. A high proportion of Candida spp. (39.9%) 

showed decreased susceptibility to fluconazole. Five isolates were resistant to nystatin. Protease and phospholipase activities were detected in 

100% and 36.8% of isolates, respectively. Most isolates displayed a hydrophobic property that was associated with biofilm formation ability. 

Conclusions: A significant number of oral Candida species exhibiting decreased susceptibility to fluconazole were isolated from colonized 

HIV-infected individuals. Furthermore, all isolates expressed potential virulence attributes in vitro. Given the high incidence and severity of 

fungal infections in HIV-infected individuals, the results of this study reinforce the importance of antifungal susceptibility testing, which 

contributes to therapeutic strategies and highlights the need for continuous surveillance of Candida colonization in this population. 
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Introduction 
Candida species are harmless colonizers of the 

gastrointestinal and reproductive tracts in 50% to 60% 

of healthy people with no symptoms of candidiasis 

[1,2]. In individuals infected with human 

immunodeficiency virus (HIV), the prevalence of 

asymptomatic colonization of oral mucous is higher, 

approaching 80% [3-11]. Importantly, colonization of 

skin and mucous membranes with Candida species is 

an important risk factor that predisposes to candidiasis 

[12], whose clinical manifestations range from 

mucosal to life-threatening disseminated infections. 

The introduction of antiretroviral therapy (ART) 

notably improved the immune status of HIV-infected 

individuals, markedly reducing the incidence of 

several opportunistic infections [10,13,14]. However, 

invasive fungal infections are a major cause of HIV-

related mortality worldwide, and Candida species rank 

among the four most prevalent etiological agents [15-

17]. In Brazil, candidiasis is the second cause of 

deaths in HIV-positive patients due to fungal 
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infections [15,17]. Moreover, oropharyngeal 

candidiasis (OPC) remains clinically relevant in these 

individuals, where treatment is difficult and recurrent 

episodes are frequent, requiring multiple antifungal 

treatments, which may lead to resistance selection 

[18]. Recurrent OPC may increase morbidity and 

mortality in these individuals [19]. 

The severity and chronicity of oral lesions due to 

Candida spp. in these individuals have been attributed 

to progressive HIV-induced T-cell immunodeficiency 

[9]. On the other hand, as opportunistic pathogens, 

Candida spp. express several virulence factors that 

contribute to the pathogenesis of candidiasis. These 

factors include adhesins (host recognition molecules), 

secreted aspartic proteases, phospholipases, 

morphogenesis (yeast-hyphal reversible transition), 

phenotypic switching, and biofilm formation [20-22]. 

In the study described here, the yeasts were 

isolated from the oral cavity of HIV-infected 

individuals who had no clinical evidence of 

candidiasis. All isolates were identified and tested for 

protease and phospholipase activities in vitro. In 

addition, we determined the in vitro susceptibility 

pattern of the isolates to fluconazole and nystatin, the 

hydrophobicity of the cells, and their capacity for 

biofilm production on an abiotic surface. 

 

Methodology 
Study population 

A total of 242 HIV-infected patients seen in 2010 

at the Centro de Referência Dr. Bruno Piancastelli 

Filho, a specialized care service in AIDS in Londrina 

city, were enrolled in this study. This is the major 

referral center for the management of HIV-related 

infections in the north of Paraná State in Brazil. All of 

the patients signed a written informed consent form to 

participate in this study, agreeing to the publication of 

this report and any accompanying images. The study 

protocol was in accordance with the ethics committee 

of the Universidade Estadual de Londrina (Document 

No. 036/10). The patients were evaluated regularly by 

experienced infectious disease physicians. Sexual 

transmission was the most prevalent pathway of HIV 

contamination in these populations. During specimen 

collection, no patient was on antifungal agents, and 

there was no clinical evidence of oral candidiasis. The 

most recent CD4
+ 

and CD8
+
 T lymphocyte count, viral 

load, and ART prescribed were obtained from the 

medical records of the patients. 

 

Isolate identification 

Samples from the patients were obtained by the 

oral rinse method described by Samaranayake et al. 

[23], with some modifications. Patients rinsed with 

sterile distilled water (10 mL) for 30 seconds and spit 

it out into a sterile container. Each sample was 

centrifuged at 1,500 g at 4°C, the supernatant was 

discarded, and the pellet was suspended in 1.0 mL of 

50 mM sodium phosphate buffer, pH 7.4, containing 

0.15M NaCl (PBS). A 100-L sample was spread on 

Sabouraud dextrose (SD) agar supplemented with 50 

µg/mL chloramphenicol. The cultures were incubated 

at 37°C for at least seven days under aerobic 

conditions, and colonies were counted. Results were 

expressed as number of colony-forming units (CFU) 

per milliliter. The samples were also cultured on 

CHROMagar Candida medium (Difco, São Paulo, 

Brazil) for differential growth analysis. For each 

positive sample, colonies were examined 

microscopically after Gram staining, and two colonies 

of each sample were sub-cultured in SD agar for 

identification. The identity of each yeast isolate was 

determined by standard mycological methods [24]. 

Concomitantly, species identification was confirmed 

by polymerase chain reaction (PCR)-based methods 

[25-27]. 

 

Antifungal susceptibility testing 

The minimum inhibitory concentration (MIC) of 

fluconazole (Sigma Chemical Co, São Paulo, Brazil) 

and nystatin (Sigma Chemical Co) for all isolates was 

determined by the broth microdilution assay for yeasts 

based on the Clinical and Laboratory Standards 

Institute (CLSI) guidelines [28]. Quality control C. 

parapsilosis ATCC 22019 was included in each 

experiment. Two wells of each plate served as growth 

and sterility controls. The interpretative criteria for 

susceptibility to fluconazole were those published in 

the CLSI [28]. For nystatin, MIC was defined as the 

value in which 100% growth inhibition was observed 

[29]. 

 

Cell surface hydrophobicity determination 

The hydrophobicity of the yeasts was determined 

as previously described [30]. Briefly, each Candida 

isolate was grown at 37C for 24 hours in SD broth. 

The yeasts were harvested by centrifugation and 

washed twice, and the cell density was then adjusted to 

an absorbance of 0.4 at 660 nm in 5 mL of PBS. A 

volume of 2.5 mL of this yeast suspension was added 

to two sterile glass tubes, and 0.5 mL of xylene 

(Merck, São Paulo, Brazil) was added to one of the 
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tubes. Following 10 minutes of incubation in a water 

bath at 37°C, the test tube was vigorously mixed for 1 

minute and incubated for an additional 30 minutes 

under the same conditions. The aqueous phase was 

carefully removed, and the absorbance was determined 

at 660 nm. The cell surface hydrophobicity (CSH) was 

expressed as the percentage decrease in optical density 

of the aqueous phase of the test as compared with the 

control, where the greater the change in absorbance of 

the aqueous phase, the more hydrophobic the yeast 

sample. Each assay was performed on three separate 

occasions with triplicate determinations each time. 

 

Biofilm production assay 

Determination of biofilm production was 

performed in polystyrene, flat-bottomed 96-well 

microtiter plates (Techno Plastic Products, 

Trasadingen, Switzerland) using the procedure 

previously described [31]. In brief, the yeast isolates 

were grown at 37°C for 24 hours in RPMI 1640 broth, 

and the cells were counted. A 20 L broth suspension 

of 6 x 10
5
 yeasts was placed in each well containing 

180 L of RPMI medium. The plates were incubated 

at 35°C for 24 hours and washed once with sterile 

distilled water. Approximately 100 L of 0.1 mg/mL 

XTT/1 M menadione (Sigma Chemical Co) were 

added to each well, and the plates were incubated in 

the dark for 2 hours at 37°C. The supernatant was 

transferred to new wells of microtiter plate before 

spectrophotometric readings at 490 nm with a 

microtiter plate reader (Universal Microplate Reader 

ELx800, Bio-Tek Instruments, Winooski, USA). 

Experiments were carried out in triplicate on three 

different occasions. 

 

Determination of protease and phospholipase 

activities 

Enzyme activity was assayed on SD agar plates 

containing 0.1% bovine serum albumin (BSA) or 4.0% 

egg yolk as protease and phospholipase substrate, 

respectively. For protease activity, the yeast isolates 

were previously grown at 37°C for 18 hours in 

minimal medium (MM) broth [32] supplemented with 

0.1% BSA, pH 4.0, to induce the secretion of 

enzymes. To determine phospholipase activity, a cell 

suspension was obtained from a 24-hour SD broth-

yeast culture, and the assay was carried out on SD agar 

supplemented with 4.0% egg yolk, 350 M NaCl, and 

6.5 M CaCl2, pH 4.5. For both assays, cells were 

counted in a Neubauer chamber, and a 10 L 

suspension from 10
6
 yeasts/mL was placed on the 

surface of the agar medium. The cultures were 

incubated at 37°C for 96 hours, after which the 

diameter of the degradation (protease activity) or 

precipitation (phospholipase activity) zone around the 

colony was determined. Enzyme activity was 

determined by calculating the ratio between colony 

diameter and colony diameter plus 

degradation/precipitation zone (Dz/Pz values of 1 

indicated no detectable protease or phospholipase 

activity, respectively) [33]. Each isolate was tested in 

triplicate, and the experiments were carried out on 

three different occasions. 

 

Statistical analyses 

Qualitative variables associated with Candida spp. 

colonization were analyzed using the Chi-square test 

or Fisher's exact test where appropriate. Continuous 

variables were analyzed using the Mann-Whitney test, 

because these do not show normal distribution. 

Spearman’s rank correlation was determined to 

compare the degree of association between virulence 

factors. All analyses were performed using the 

Statistical Package for Social Sciences (SPSS)
 
 

software version 20.0, and p value less than 0.05 was 

considered significant. 

 

Results 
Patients and yeast identification 

A total of 242 HIV-infected patients were enrolled 

in this study. Of these, 159 were males and 83 were 

females, and their mean age was 40.4 years (ranging 

from 17 to 78 years). Among all HIV-infected 

individuals, there was a viral load of < 50 copies/mL 

for 144 patients and > 500,000 copies/mL for one 

patient. For the other 97 patients, the mean viral load 

was 43,593 ± 81,467 (ranging from 61 to 353,456 

copies/mL). The mean CD4
+
 and CD8

+
 lymphocyte 

counts were 510.20 ± 287.55 cells/mm
3
 (ranging from 

2 to 1,493) and 1,105 ± 565.33 cells/mm
3
 (ranging 

from 108 to 4,185), respectively (Table 1). 

Two hundred and two (83.5%) patients were on 

ART, and most subjects (141/202, 69.8%) were taking 

at least one protease inhibitor (PI) in combination with 

other drugs. The most frequent treatment regimen was 

one NRTI (nucleoside reverse transcriptase inhibitor, 

apricitabine) plus one PI (lopinavir) (71/202, 34.1%), 

followed by one NRTI (apricitabine) plus one NNRTI 

(non-nucleoside transcriptase inhibitor, efavirenz) 

(51/202, 25.2%), one NRTI (apricitabine) plus two PI 

(atazanavir and ritonavir) (20/202, 9.9%), and one 

NRTI (apricitabine) plus one PI (atazanavir) (16/202, 

7.9%).  
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  Table 1. Demographic characteristics, laboratory findings, and medication histories of HIV-infected patients enrolled in this 

study 

Characteristics All cases (n = 242), n (%) 
Yeast culture 

Positive (n = 122), n (%) Negative (n = 120), n (%) 

Age, mean ± SD (years) 40.42 ± 11.35 40.45 ± 11.87 40.25 ± 11.25 

Gender, male 159 (65.7) 82 (67.2) 77 (64.1) 

Gender, female 83 (34.3) 40 (37.9) 43 (35.8) 

Modes of HIV transmission    

Sexual 183 (75.6) 96 (78.7) 87 (72.5) 

Intravenous drug use 7 (2.9) 2 (1.6) 5 (4.1) 

Not identified 52 (21.5) 24 (19.7) 28 (23.3) 

Antifungal therapy within the previous 6 

months 
   

Fluconazole 88 (36.4) 49 (40.2) 39 (32.5) 

Nystatin 37 (15.3) 21 (17.2) 16 (13.3) 

HIV infection    

Duration of HIV infection (years) 6.31 ± 4.85 6.48 ± 4.70 6.14 ± 5.00 

HIV viral load    

> 50 and < 500,000 copies/mL 97 (40.1) 57 (46.7) 40 (33.3) 

> 500,000 copies/mL 1 (0.4) None 1 (0.8) 

> 50 and < 500,000 copies/mL (mean ± 

SD) 
43,593 ± 81,467 52,787 ± 95,357 30,491 ± 54,597 

CD count (cells/mL)    

CD4 count (cells/mL) 510.20 ± 287.55 520.14 ± 295.35 506.97 ± 289.27 

CD4 count ≤ 200 cells/mL 31 (12.8) 16 (13.1) 15 (12.5) 

CD8 count (cells/mL) 1,105 ± 565.33 1,150 ± 552.27 1,032 ± 574.28 

Antiretroviral therapy    

None 40 (16.5) 22 (18.0) 18 (15.0) 

1NRTI + 1NNRTI 54 (22.3) 32 (26.2) 22 (18.3) 

2NRTIs + 1NNRTI 7 (2.9) 4 (3.3) 3 (2.5) 

1NRTI + 1PI 88 (36.4) 35 (28.7) 53 (44.2) 

1NRTI + 2PIs 21 (8.7) 11 (9.0) 10 (8.3) 

2NRTIs + 1PI 11 (4.5) 8 (6.6) 3 (2.5) 

2NRTIs + 2PIs 7 (2.9) 3 (2.5) 4 (3.3) 

3NRTIs + 1PI 4 (1.7) 3 (2.5) 1 (0.8) 

1NRTI + 1NNRTI + 1PI 1 (0.4) None 1 (0.8) 

2NRTIs + 1NNRTI + 1PI 2 (0.8) 1 (0.8) 1 (0.8) 

2NRTIs + 1NNRTI + 3PIs 1 (0.4) None 1 (0.8) 

2NRTIs + 1PI + 1II 2 (0.8) 2 (1.6) None 

2NRTIs + 2PIs + 1II 2 (0.8) None 2 (1.7) 

2NRTIs + 1PI + 1FI 1 (0.4) None 1 (0.8) 

2IPs 1 (0.4) 1 (0.8) None 

SD: standard deviation; NRTI: nucleoside reverse transcriptase inhibitor; NNRTI: non-nucleoside reverse transcriptase inhibitor; PI: protease inhibitor; II: 

integrase inhibitor; FI: fusion inhibitor 
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Of the 242 patients, 88 (36.4%) reported previous 

use of fluconazole, and among them, 27 (11.2%) and 

one (0.41%) also used nystatin and amphotericin B, 

respectively, during the six months before sampling. 

Ten patients out of 242 (4.13%) reported previous use 

of nystatin alone (Table 1). 

It was observed that age, gender, viral load, CD4
+
 

and CD8
+
 lymphocyte counts, global use of ART, and 

previous use of antifungals did not influence the in 

vitro isolation of Candida spp. However, the 

combined use of PIs with other ARTs had a protective 

effect against oral yeast colonization in these patients 

(p < 0.05, Chi-square test). 

Of all 242 patients, 122 (50.4%) were colonized 

with Candida spp. and of these, 11 (9%) showed 

colonization by two species, resulting in 133 isolates. 

The colony counts ranged from 1 x 10
2
 to 6.6 x 10

3
 

CFU/mL. C. albicans was the most frequently isolated 

species, accounting for 75.2% (100/133) of all isolates. 

C. glabrata was recovered from 18.8% of patients 

(25/133), followed by C. tropicalis (3/133, 2.25%), C. 

dubliniensis (3/133, 2.25%), and C. krusei (2/133, 

1.5%). Among the patients co-colonized, the 

combinations were C. albicans and C. glabrata (n = 9) 

and C. albicans and C. krusei (n = 2). 

 

Fluconazole susceptibility pattern 

The susceptibility profile of the Candida spp. 

isolates to fluconazole is shown in Table 2. Most 

isolates (80/133, 60.1%) were susceptible to 

fluconazole (MICs ranging from 0.25 to 8 g/mL). 

Thirty (22.6%) and 23 (17.3%) isolates were 

susceptible dose-dependent (MIC ranging from 16 to 

32 g/mL) and resistant (MIC ranging from 64 to 128 

g/mL), respectively. The mean MIC for C. albicans 

was 20.19 ± 35.34 g/mL, whereas for C. non-

albicans isolates, it was 35.47 ± 41.41 g/mL. 

Previous use of fluconazole was significantly (p < 

0.001, Mann-Whitney test) associated with an 

increased recovery of Candida spp. isolates that had 

reduced susceptibility to this antifungal. 

Regarding nystatin, 116 out of 133 (87.2%) 

isolates were considered susceptible (MIC ≤ 4 g/mL) 

Table 2. Antifungal minimum inhibitory concentration (MIC) distribution of Candida spp. isolated from oral cavities of HIV-

infected patients 

Candida species 
Number of isolates (%) 

Fluconazolea Nystatina 

C. albicans (n = 100)   

  Range of MIC (µg/mL) 0.25–128 1–128 

   Susceptible 65 (65.0) 90 (90.0) 

   Susceptible dose-dependent 22 (22.0) 7 (7.0) 

   Resistant 13 (13.0) 3 (3.0) 

C. dubliniensis (n = 3)   

  Range of MIC (µg/mL) 4–8 4–4 

   Susceptible 3 (100.0) 3 (100.0) 

   Susceptible dose-dependent 0 0 

   Resistant 0 0 

C. glabrata (n = 25)   

  Range of MIC (µg/mL) 0.5–128 2–128 

   Susceptible 10 (40.0) 20 (80.0) 

   Susceptible dose-dependent 6 (24.0) 4 (16.0) 

   Resistant 9 (36.0) 1 (4.0) 

C. krusei (n = 2)   

  Range of MIC (µg/mL) 4–32 4–128 

   Susceptible 1 (50.0) 1 (50.0) 

   Susceptible dose-dependent 1 (50.0) 0 

   Resistant 0 1 (50.0) 

C. tropicalis (n = 3)   

  Range of MIC (µg/mL) 8–64 4–8 

   Susceptible 1 (33.3) 2 (66.7) 

   Susceptible dose-dependent 1 (33.3) 1 (33.3) 

   Resistant 1 (33.3) 0 
a The interpretative criteria for susceptibility to fluconazole and nystatin were those published in the CLSI [28] and Wingeter et al. [29], respectively; 
Fluconazole: MIC < 8 µg/mL, susceptible; MIC = 16–32 µg/mL, susceptible dose-dependent; MIC > 64 µg/mL, resistant; Nystatin: MIC ≤ 4 µg/mL, 

susceptible; MIC = 8–32 µg/mL, susceptible dose-dependent; MIC > 64 µg/mL, resistant 
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to this antifungal, and resistance (MIC ≥ 64 g/mL) 

was observed only in five (3.7%) isolates, where three 

isolates of C. albicans and one each of C. glabrata and 

C. krusei showed a MIC ≥ 128 µg/mL. Twelve out of 

133 (9.0%) isolates presented MICs of 8 µg/mL and 

were classified as susceptible dose-dependent. 

Cell surface hydrophobicity and biofilm formation 

Overall, the mean relative CSH of Candida 

isolates was 63.57 ± 21.59. The mean relative CSH of 

C. albicans was 64.71 ± 20.87, ranging from 4.22 ± 

0.15 to 84.92 ± 0.71. The corresponding mean value 

for C. non-albicans species was 60.12 ± 23.64, with a 

range of 5.87 ± 0.13 to 85.83 ± 0.42. Seventy-four 

(57.9%, including 57 C. albicans and 17 C. non-

albicans) of 133 isolates displayed CSH values higher 

than 70% and could be classified as hydrophobic cells 

(Table 3, Figure 1A). 

Candida spp. isolates exhibited variable intensity 

of metabolic activity after incubation for 24 hours on a 

polystyrene surface, indicating the capacity of biofilm 

formation (Figure 1B). Most isolates (101/133, 75.9%) 

showed high metabolic activity (optical density 

[OD]490nm > 0.5) after 24 hours of incubation, with the 

highest activities detected for C. tropicalis isolates 

(Table 3). A significant correlation was observed 

between CSH and biofilm formation (p < 0.01, 

Spearman test). 

   

Figure 1. Cell surface hydrophobicity (A) and metabolic 

activity of biofilm formed on polystyrene surface (B) 

distribution of Candida species isolated from oral cavities of 

HIV-infected patients 

Table 3. Cell surface hydrophobicity (CSH) index and metabolic activity of biofilm of Candida species isolated from oral 

cavities of HIV-infected patients 

Candida species CSH (%)* 
Metabolic activity 

(OD490 nm)* 

C. albicans 4.22 ± 0.15–84.92 ± 0.71 0.02 ± 0.00–1.37 ± 0.10 

C. dubliniensis 18.75 ± 0.49–81.00 ± 0.14 0.20 ± 0.01–1.04 ± 0.02 

C. glabrata 5.87 ± 0.13–85.29 ± 0.42 0.06 ± 0.01–1.17 ± 0.07 

C. krusei 26.57 ± 0.42–27.13 ± 0.80 0.12 ± 0.03–0.13 ± 0.03 

C. tropicalis 70.38 ± 0.07–85.83 ± 0.42 1.05 ± 0.11–1.13 ± 0.05 

* Significant correlation between CSH and biofilm formation (p < 0.01, Spearman test); OD: optical density 
 

 

 

Table 4. Protease and phospholipase activity of Candida species isolated from oral cavities of HIV-infected patients 

Candida species 

Number of isolates (%) 

Scoring of protease activity* Scoring of phospholipase activity* 

Negative 1 + 2 + 3 + Negative 1 + 2 + 3 + 

C. albicans (n = 100) 0 8 (8) 27 (27) 65 (65) 59 (59) 41 (41) 0 0 

C. dubliniensis (n = 3) 0 0 1 (33.3) 2 (66.7) 3 (100) 0 0 0 

C. glabrata (n = 25) 0 1 (4) 7 (28) 17 (68) 18 (72) 6 (24) 1 (4) 0 

C. krusei (n = 2) 0 0 1 (50) 1 (50) 1 (50) 1 (50) 0 0 

C. tropicalis (n = 3) 0 1 (33.3) 1 (33.3) 1 (33.3) 3 (100) 0 0 0 

* The protease and phospholipase activities were determined by calculating the ratio between colony diameter and colony diameter plus 

degradation/precipitation zone (Dz/Pz) as previously described by Price et al. [33]. The enzymes activities were scored into four categories: negative, Dz/Pz 

of 1.0; low activity (1+) for 0.64 <Dz/Pz< 1.0; intermediate activity (2+) for 0.30 <Dz/Pz ≤ 0.64; high activity (3+) for Dz/Pz ≤ 0.30. 
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Enzyme activities 

All the isolates in this study demonstrated the 

secretion of protease activity on BSA, and 86 (64.7%) 

isolates showed high protease activity. The enzyme 

activity of 37 (27.8%) isolates was classified as 

intermediate. Low enzyme activity was observed in 10 

(7.5%) isolates (Table 4). The mean Dz value 

observed for all species was 0.34 ± 0.20, and the mean 

Dz values of 0.34 ± 0.21 and 0.35 ± 0.20 were 

observed for C. albicans and C. non-albicans isolates, 

respectively. Protease production by the isolates from 

individuals undergoing treatment with PI inhibitors, 

except for nelfinavir, was significantly lower than in 

isolates from subjects who did not receive PI (p < 

0.001, Mann-Whitney test). 

Phospholipase activity was detected in 49 isolates 

(36.8%) with a mean Pz value of 0.80 ± 0.08.  The 

mean Pz values of 0.80 ± 0.07 and 0.82 ± 0.13 were 

observed for C. albicans and C. non-albicans isolates, 

respectively. Forty-eight (36.1%) isolates showed low 

phospholipase activity. Only one (0.8%) isolate of C. 

glabrata exhibited intermediate phospholipase activity 

on egg yolk. No C. tropicalis and C. dubliniensis 

isolates were positive for phospholipase under the 

conditions analyzed here (Table 4). 

 

Discussion 
Several studies have shown a high prevalence of 

oral Candida carriage in HIV-infected individuals 

[5,6,8-10], and this can vary according to sampling 

method and geographical location [5,8,9]. By using 

oral rinse for yeast isolation, other Brazilian surveys 

detected oropharyngeal Candida carriage in 

approximately 60% to 70% of HIV-infected 

individuals [6,8]. In this study, 50.4% of HIV-infected 

individuals’ oral cavities were colonized by Candida 

species, and the therapeutic combination of ART with 

PI exerted a protective effect against oropharyngeal 

yeast colonization in this population. The effect of 

highly active ART on the risk of Candida colonization 

in HIV-infected has been described elsewhere. While a 

slight decrease [34] or no effect [5,10] on 

oropharyngeal yeast colonization in patients receiving 

ART has been reported, other authors also observed a 

protective effect of ART treatment regimens [7,11]. 

On the other hand, higher oropharyngeal Candida 

carriage has been detected in ART-treated HIV-

infected individuals [2]. 

C. albicans was the most frequently isolated 

species from the oral cavity of HIV-infected patients 

examined in this study, including co-colonization 

cases, accounting for around 75% of all yeast isolates. 

In fact, this is by far the most prevalent commensal 

and pathogenic of the Candida species [3,5,6,8-

10,17,35]. However, increasing rates of colonization 

and even infections with other species of Candida in 

HIV-infected individuals have been observed 

elsewhere [2-4,8]. 

One important finding of this study was the high 

proportion of fluconazole-resistant and susceptible 

dose-dependent isolates, including C. albicans, which 

accounted for 39.9% of all Candida isolates. As 

observed by others [36], the previous use of azole 

agents was strongly associated with higher MIC for 

fluconazole against yeast isolates, making it more 

difficult to select an empiric therapy during the 

development of candidiasis in these patients. 

The mechanisms by which commensal Candida 

species cause diseases are not completely understood. 

It is well know that besides the dysfunction of the host 

immune system or an imbalance of the normal 

microbiota, the potential virulence of these yeasts is 

associated with the ability to adhere, invade, and 

damage host cells [21]. CSH is considered an 

important nonspecific factor that contributes to 

adherence of Candida spp. on different surfaces. The 

hydrophobic cells exhibit greater adherence to acrylic 

surfaces and host cells and tissues, and decreased 

susceptibility to being killed by polymorphonuclear 

neutrophils, which can contribute to the colonization 

and dissemination of the yeast [37]. Most Candida 

isolates exhibited hydrophobic property in this study, 

and as previously observed [38], this characteristic 

was strongly associated with biofilm formation on 

polystyrene surfaces. The formation of biofilm by 

Candida spp. has been demonstrated on a number of 

non-biological surfaces [22,31,39], and the structure of 

this cellular community shares similarities with 

mucosal-biofilm architecture [40]. Biofilms are 

inherently resistant to antimicrobial agents [22,31,39] 

and to host immune defenses [41]. Clinically, this 

mode of growth is a major cause of persistent infection 

and is associated with high mortality rates [42]. On the 

other hand, biofilms are also established during host 

colonization, enabling the yeast to withstand removal 

by mechanical processes. The ability of oropharyngeal 

Candida isolates from HIV-infected individuals to 

form biofilm was described previously, and this 

characteristic was associated with higher virulence in 

experimental infection models [43,44]. 

Most Candida isolates displayed intermediate to 

high protease activity in this study, and this finding 

was also previously observed by other authors 

[35,45,46]. Except for nelfinavir, other ART treatment 
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regimens of the patients analyzed here appeared to 

decrease the secretion of proteases. Similarly, Ribeiro 

et al. [45] reported that Candida isolates from HIV-

infected individuals receiving combined ART and PI 

showed lower levels of these enzymes. Secreted 

aspartic proteases, encoded by a multigene family, 

have been associated with the virulence of Candida 

species [20]. These enzymes can facilitate adhesion to 

and penetration into host cells [47,48] and can 

counteract host defense [49]. In contrast to proteases, 

most Candida isolates were negative for 

phospholipase activity. Only 36.1% of all isolates 

secreted low levels of phospholipase, and this result 

differed from those of others who have shown high 

enzymatic activity in oropharyngeal Candida isolates 

from HIV-infected individuals [35,45,46]. Several 

lines of evidence correlate phospholipases with the 

virulence of Candida spp., which target membrane 

phospholipids, leading to cell lysis and host damage 

[50]. 

 

Conclusions 
Oropharyngeal Candida colonization remains 

common in HIV-infected individuals, even with ART. 

Studies monitoring the distribution and antifungal 

susceptibility of Candida isolates from these 

populations have crucial importance for choosing the 

correct antifungal therapy during candidiasis. This 

study showed a significant number of Candida spp. 

isolated from oropharyngeal colonized HIV-infected 

individuals, exhibiting decreased susceptibility to 

fluconazole, the first-line antifungal for treatment of 

candidiasis. Most importantly, this scenario is strongly 

associated with previous use of this antifungals. In 

addition, all isolates expressed potential virulence 

attributes, supporting the need for continuous 

surveillance of Candida colonization in this 

population. 
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