Original Article

Variable-number tandem repeat markers for *Mycobacterium intracellulare* genotyping: comparison to the 16S rRNA gene sequencing

Kaisen Chen^{1,3}, Yangyi Zhang², Yiping Peng⁴

¹ Department of clinical laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, China

² Departments of TB Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China

³ Key Laboratory of Medical virology, Fudan University, Shanghai, China

⁴ Department of respiration, Jiangxi provincial Chest Hospital, Nanchang, China

Abstract

Introduction: Characterizing *Mycobacterium intracellulare* responsible for nontuberculous mycobacterial (NTM) infections may aid in controlling outbreaks. This study aimed to compare 16S ribosomal ribonucleic acid (rRNA) sequencing and variable-number tandem repeat (VNTR) genotyping of *M. intracellulare* strains isolated from clinical samples, and to characterize VNTR clusters associated with NTM infections or cavity formation.

Methodology: Sputum samples were obtained from 77 HIV-negative patients with pulmonary disease between 2009 and 2013. One *M. intracellulare* strain was isolated from each patient and genotyped using 16S rRNA and eight loci VNTR sequencing.

Results: Single nucleotide polymorphism (SNP) genotyping identified seven point mutations at nucleotide positions 101, 178, 190, 252, 382, 443, and 490 in 16S rRNA, and four SNP patterns were identified: type 1 (16 strains), 2 (41 strains), 3 (11 strains), and 4 (1 strain); 5 strains had unique SNP patterns. VNTR genotyping identified VNTR12 as the most discriminating marker (allelic diversity 0.692). VNTR3 was the most homogeneous marker (allelic diversity 0.518), but each locus had high discriminating ability. The 77 strains were clustered according to the unpaired group method using arithmetic averages: cluster 1 (17 strains), 2 (43 strains), 3 (9 strains), and 4 (4 strains); 4 strains had unique SNP patterns. Overall, over 90% strains were matched to similar SNP and VNTR groupings. VNTR clusters were associated with NTM infection (p = 0.007) and presence of a cavity (p = 0.042). Both methods distinguished four subtypes of *M. intracellulare*, which corresponded. Conclusions: VNTRs may represent an effective, user-friendly, low-cost typing technique.

Key words: nontuberculous mycobacterial; *Mycobacterium intracellulare*; 16S rDNA sequencing; single-nucleotide polymorphism; variable-number tandem repeat genotype.

J Infect Dev Ctries 2017; 11(2):158-165. doi:10.3855/jidc.7669

(Received 10 September 2015 - Accepted 21 March 2016)

Copyright © 2017 Chen *et al.* This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Mycobacterium intracellulare (M. intracellulare) is often responsible for nontuberculous mycobacterial (NTM) infection. As an environmental opportunistic pathogen, M. intracellulare is a ubiquitous inhabitant of soils, water, animal and plant surfaces, and air [1,2]. Humans acquire *M. intracellulare* by inhalation or ingestion, either directly from their normal habitat or indirectly via intake of contaminated water or food. Despite their omnipresence in the environmental niche, there have been no reported cases of human-to-human or animal-to-human transmission [3]. M. intracellulare is the most common cause of severe lung NTM infection, and can cause human pulmonary disease, wound infection, bacteremia, and other diseases [4,5]. *M. intracellulare* has been reported to be isolated in up to one-third of NTM in some settings [6-8].

The genetic diversity in M. intracellulare responsible for NTM is not yet well understood [9-11], and further characterizing the distribution and clinical profile of *M. intracellulare* strains may allow sources of the disease to be identified and allow for the monitoring of clinical outbreaks, disease relapses, and population dynamics [12]. Strain comparison of this species has been dependent upon pulsed-field gel electrophoresis (PFGE) [13,14], which is expensive, technically difficult, and time consuming, but its genome has been recently sequenced [15-17]. Now, sequence-based epidemiological characterization of M. intracellulare strains may be achieved [2]. Four genotypes of *M. intracellulare* have been distinguished by the polymerase chain reaction (PCR)-restriction enzyme pattern analysis heat-shock protein 65 (PRAhsp65) technique [18,19].

Variable-number tandem repeat (VNTR) are mini satellite-like loci containing variable copy numbers and usually exist as flanking regions or non-coding region of different genes. VNTRs are scattered throughout the mycobacterial genome [20], and as a result, VNTR could be considered as a genotype tool in epidemiological research [21,22]. VNTR is an unambiguous, highly reproducible, and less costly genotyping method that has been widely used for the genotyping of several species of NTM, including *M. intracellulare* [23-25].

The number of repeats in VNTR loci can be changed by insertions or deletions, limiting the capacity of genotyping data to yield accurate phylogenetic results [26]. Characterization of single-nucleotide polymorphisms (SNPs) has been widely used in bacterial identification and genotyping [27-29], as well as SNP analysis [30]. As one of the most conserved genes, these mutable bases play an important role in phylogenetic analysis [31].

This study aimed to explore the capacity of 16S rRNA sequencing and eight loci VNTR genotyping of *M. intracellulare* strains isolated from clinical samples, and characterized *M. intracellulare* genotypes associated with NTM infections or cavity formation.

Methodology

Strains

A total of 77 clinical strains of M. Intracellulare were obtained from 77 HIV-negative patients with pulmonary disease between January 2009 and December 2013 at the Shanghai Municipal Center for Disease Control and Prevention (China). Of 77 HIVnegative patients with pulmonary disease, 54 were male and 23 were female, with a mean age of 53.1±16.4 years. NTM infection was detected in 48 (62.3%) patients, and colonization was detected in 29 (37.7%). A total of 42 (54.5%) patients showed a cavity. All strains isolated from patients' sputum were identified as M. intracellulare using the COBAS AMPLICOR Mycobacterium tuberculosis assay analyzer (Roche Diagnostic System, Basel, Switzerland). Age and gender of all patients were recorded. NTM pulmonary diseases were diagnosed based on the guidelines issued by the American Thoracic Society. Presence of a cavity was analyzed by X-ray. The study protocol was approved by the ethics committee of the Shanghai Municipal Centers for Disease Control and Prevention (CDC).

Preparation of mycobacterial DNA

As previously described [32], Ziehl-Neelsen stainpositive bacteria grown on Lowenstein-Jensen medium for 1–3 weeks were suspended in 1 mL of TE buffer (10 mM Tris, 1 mM ethylenediaminetetraacetic acid [pH8.0]) and heat-inactivated for 10 minutes at 100°C, then at 0°C for 5 minutes. The bacterial specimen tube was centrifuged at 12,000×g for 3 minutes, and then the supernatant was transferred into another clean tube for further analysis. The amount and quality of DNA were assessed by Nano-200 micro-spectrophotometer (Hangzhou Allsheng Instruments Co., Ltd., Zhejiang, China) at 260 and 280 nm.

16S rDNA gene sequencing

A 514-bp fragment of 16SrDNA gene was amplified using the following primers: forward 5'-TGGAGAGTTTGATCCTGGCTCAG-3' and reverse 5'-TACCGCGGCTGCTGGCAC-3' (Sunny Biotech Co., Ltd., Shanghai, China). The reaction suspension (50 µL) included 25 µLof MATRIX (Tiangen Biotech, Co., Ltd., Beijing, China), 13 µLof double-distilled water (ddH₂O), 5 µL of each primer, and 2 µLof DNA template. The PCR amplification conditions were: predenaturation at 94°C for 5 minutes followed by 30 cycles of 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 30 seconds, and a single 5-minute elongation step at 72°C. DdH₂O served as a negative control, and M. intracellulare ATCC13950 served as a positive control. The DNA products were visualized using 1% agarose gel electrophoresis. All DNA products were sequenced by Sunny Biotech Co., Ltd., Shanghai, China. SNP stability and reliability of 16S rDNA gene sequencing were assessed by the isolation of11 strains from 4 patients over 1 year.

PCR amplification of VNTR

Eight pairs of primers were designed to amplify isolated *M. intracellulare*, as previously described [20,24] (Table 1). The PCR reaction comprised 1 µLof DNA template (approximately 20 ng) and 9 µLof mixture containing Taq (1×) PCR MasterMix (Tiangen Biotech, Co., Ltd., Beijing, China), 0.4 µL of each primer (Sunny Biotech Co., Ltd., Shanghai, China), 0.5 µLof dimethyl sulfoxide, and ddH₂O (to adjust the volume to 9 µL). The PCR amplification conditions were: pre-denaturation at 94°C for 5 minutes, followed by 30 cycles of 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 30 seconds, and a single 7minute elongation step at 72°C. *M. intracellulare* ATCC13950 served as a positive control. The amplified PCR products were analyzed using 1% agarose gel electrophoresis to determine their size in base pairs. Repeat numbers were calculated according to each biomarker loci repeat size (Table 1).

Data analysis

16S rDNA sequences analysis was performed using MEGAversion 5.04, and eight loci VNTR dendrograms were constructed according to the unpaired group method using arithmetic averages (UPGMA). The discriminatory power of combined mycobacterial interspersed repetitive unit (MIRU)-VNTR loci was calculated using the Hunter-Gaston discriminatory index (HGDI), which expresses the probability of two strains in a given population appearing to be unrelated according to the typing method used [33]. Genetic diversity was assessed by allelic diversity (h) [34]. The relationship between genotyping of 16S rDNA sequences and VNTR clusters was estimated using Jaccard similarity coefficient [35]. Bionumerics software, version 6.5 (Applied Maths, Sint-Martens-Latem, Belgium) was used to analyze the genetic relationships of independent strains through the construction of an UPGMA tree.

All statistical analyses were conducted using SPSS version 17.0 (IBM, Armonk, USA). Statistical significance was evaluated by Fisher's exact test for categorical variables. A p value < 0.05 was considered statistically significant.

Results

VNTR typing

Eight loci VNTRs were amplified efficiently from all strains: MIN2, and VNTR1, 2, 3, 7, 10, 12, and 13 (Table 2). Eleven strains were isolated from four patients over one year during NTM relapse, with the aim of establishing the stability of VNTR genotyping. Identical VNTR allele profiles were observed in these samples, indicating that VNTR typing was a reliable method and that the strains were genetically stable over the indicated time frames.

Genetic diversity was assessed by allelic diversity (h), as described by Selander *et al.* [34]. VNTR12

 M. intracellulare
 ATCC13950.

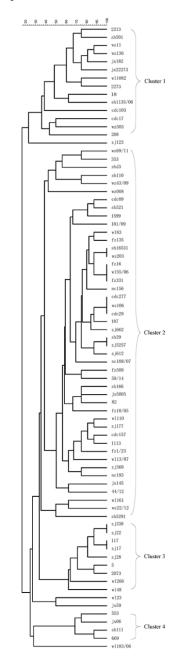
Loci name	Primer sequences	Estimated size (bp)	Repeat size (bp)	Conversation (%)	
MIN2#	F: 5'-TCAGGAATGGGTCCGGTTC-3'	400	56	98	
IVIIIN2#	R: 5'-AGCTCGTGACGACGGAAAC-3'	400	50	90	
VNTR1*	F: 5'-TCGCCGAGGACTTCGTCT-3'	273	57	100	
VINIKI	R: 5'-GTCACCACGAGGAAGATCG-3'	275	57	100	
VNTR2*	F: 5'-AGGGTGGTGAACGCGTAG-3'	299	57	99	
VINTK2	R: 5'-CTCTGGCAGCCCGATACC-3'	299	57	99	
VNTR3*	F: 5'-AGAGGTGCTGCCGATTACAC-3'	280	58	100	
VINTK5	R: 5'-TCTTTGTCCGGTTCCTTTTG-3'	280		100	
VNITD 7*	F: 5'-TTTCATGGTTCGCCCTCTAC-3'	274	53	99	
VNTR7*	R: 5'-GTTCGTCGGAGGTCATGGT-3'	2/4	55	99	
VNTR10*	F: 5'-GGCTGGTTCTTTCTGGTGAC-3'	353	57	98	
VINIKIU	R: 5'-CGCGTCAAGGAACGTCAT-3'	333		98	
VAITD 10*	F: 5'-AGACCAACCCAGAAAAGTGC-3'	245	52	07	
VNTR12*	R: 5'-GTCGTGATACGCCGAATTG-3'	245	53	97	
VATD 12*	F: 5'-GTTCAGCGAGCCGGTATCT-3'	202	50	97	
VNTR13*	R: 5'-AGCTCTCGCAGCTTGGTTC-3'	292	50	97	

F: forward; R: reverse; * These primers were previously described by Ichikawa et al. [24]; # These primers were previously described by Dauchy et al. [20].

Table 2. Variable-number tandem repeat (VNTR) allelic distribution and allelic diversity among 77 M.intracellulare isolates.

Loci name —		Nı	umber of isola	lates with VNTR copy number Allelic div					
	0	1	2	3	4	5	6	#	
MIN2	2	10	13	37*	15			0.685	
VNTR1	1	14	10*	38	14			0.673	
VNTR2	9	4	6	46*	11	1		0.600	
VNTR3	5	47*	25					0.518	
VNTR7	13	4	38	18*	3			0.669	
VNTR10	10	42*	3	1	13	7	1	0.647	
VNTR12	5	22	17*	32	1			0.692	
VNTR13	2	17	38	20*				0.640	

* Denotes the profile of the reference strain ATCC13950; # Genetic diversity was assessed by allelic diversity (h), as described by Selander *et al.* [34]; Hunter-Gaston discrimination index = 0.996 [33].


exhibited the highest allelic diversity (HGDI = 0.692), and VNTR3 was the most homogeneous marker (HGDI = 0.518) (Table 2). By this method, a high discriminatory index was detected for VNTR3 and VNTR12. The overall HGDI of the eight loci of MIRU-VNTR method was 0.996. MIN2 also had a high discriminatory index (HGDI = 0.685).

The genetic relationships of the 77 independent strains were assessed by construction of an UPGMA tree. Four clusters and four singleton patterns were discriminated; cluster 2 (the most prevalent) contained 46 strains and ATCC13950 (data not shown); cluster 1 (the second-most prevalent) contained 14 strains; cluster 3 contained 9 strains; and cluster 4 contained 4 strains (Figure1).

16S rDNA gene sequencing

The 16S rDNA amplicon of the 77 M. intracellulare strains was sequenced. While the PCR product length predicted by the primers was 514 bp, only intact sequences 440 bp were achieved for each strain (rs1638040-rs1638480) and this segment had to be used for phylogenetic analysis. Within this sequence, seven loci base differences were detected, including nucleotide positions 101, 178, 190, 252, 382, 443, and 490 (16S rDNA). SNP patterns included four major pattern types and five singletons (Table 3). The most common pattern, SNP pattern type 2 (41 strains), included ATCC13590, which has been detected worldwide [36,37]. Type 3 (containing 11 strains) had high similarity with M. chimaera CIP 107892 [38]. In fact, only one base (position 403) differed between M. intracellulare and M. chimaera [39]. Type 1 (16 stains) had the same sequence as M. intracellulare 41, and included three base mutations, while type 2, first isolated in Malaysia, involved only one mutation [40]. Type 4 included four strains, and appeared to be a novel mutation pattern [41], suggesting that type 4 may exist only in east China.

Figure 1.UPGMA tree of the MIRU-VNTR types for 77 clinically independent *M. intracellulare* strains.

VNTD alaster			SNP	type		
VNTR cluster	1	2	3	4	Singletons	Total
Cluster 1	13		1		3	17
Cluster 2	2	41				43
Cluster 3			9			9
Cluster 4			1	3		4
Singletons	1			1	2	4
Total	16	41	11	4	5	77

Table 3. Distribution of VNTR and SNP types in *M. intracellulare*.

VNTR: variable-number tandem repeat; SNP: single-nucleotide polymorphism.

Comparison of VNTR and SNP typing

To assess the association between VNTR and SNP typing, Jaccard similarity coefficient was calculated [35]. As shown in Figure 2, 13 of 16 SNP Type 1 strains (81.25%) were categorized as VNTR cluster 1. All 41 SNP type 2 strains were categorized as VNTR cluster 2. Of 11 SNP type 3 strains, 9 (81.82%) were categorized as VNTR cluster 3. Three of four SNP type 4 strains (75%) were categorized as VNTR cluster 4. Overall, over 90% of strains were matched to similar SNP and VNTR groupings. The four strains with unique VNTR types also yielded unique SNP patterns (Table 3). Thus, both methods could be considered to successfully distinguish four categories of *M. intracellulare* among the 77 studied samples.

Relationship between clinical characteristics and VNTR clusters

Among the 48 patients with NTM infection, 28 (58.3%) patients had cluster 2 *M. intracellulare* strains. Cluster 1 strains were detected in 13 (27.1%) patients, and the remaining clusters or singleton strains were detected in 7 patients (Table 4). Among the 29 patients with NTM colonization, the most common cluster was cluster 2, detected in 18 (62.1%) patients, followed by cluster 3, detected in 7 (24.1%) patients; the remaining clusters or singleton strains were detected in 4 patients (Table 4). VNTR clusters were associated with NTM infection (p = 0.007).

Cluster 2 *M. intracellulare* strains was observed in 21/42 (50.0%) patients with cavities. Cluster1 strains were the next-most prevalent, detected in 11 (26.2%) patients. The remaining clusters or singleton strains were detected in 10 patients (Table 4). Of the 35 patients without cavities, the most common cluster was cluster 2, detected in 25 (71.4%) patients, followed by cluster 3, detected in 4 patients (11.4%); the remaining clusters or singleton strains were detected in 6 patients (Table 4). VNTR clusters were associated with the presence of a cavity (p =0.042).

Figure 2. Genotyping of 77 clinically isolated pulmonary *M. intracellulare* strains performed using 16S rDNA sequencing and eight loci variable-number tandem repeat (VNTR) typing. b: VNTR typing method; single-nucleotide polymorphism (SNP) typing of partial 16S rRNA gene sequence. ND: not determined; NC: no cluster.

	PRA-hsp65				SNP at:				CNID	VNTR
Isolate	typea	bp 101	bp 178	bp 190	bp 252	bp 382	bp 443	bp 490		typeb
WZ11	I	А	А	Т	G	С	Т	С	1	I
WZ136 2213	I	A	А	T T	G	c	T T	C C		1
2213	1	A	A	T	G	c	T	c		I
JX182	i	Â	A	Ť	G	č	Ť	č		i
WZ008	1	А	А	Т	G	С	Т	С		1
WZ505	I	A	Α	Т	G	с	Т	с	type1	1
18 SH1135/06	1	A	A A	т	G	c c	Т	c c	typer	
CDC103	IV	A	A	т	G	c	т	c		
SH501	IV	A	A	т	G	c	т	c		
2273	ND	Ā	Â	Ť	G	c	Ť	c		i
WL1082	ND	А	А	Т	G	с	Т	С		I
SH110	I	А	А	Т	G	с	Т	с		п
SH5291 WL23	I IV	A A	A	Т Т	G G	C C	T T	C C		П
WL23 FZ331	IV		A						Į –	NC
FZ331 ZJ177	1	A	G	A	G G	C C	C C	C C		п
WZ203	i	А	G	A	G	с	с	С		ü
CDC29	I	A	G	Α	G	с	С	с		п
WL83 JX145	1	A A	G	A A	G G	c c	c c	c c		п
JX145 187	1	A	G	A	G	c	c	c		11
CDC09	i	А	G	А	G	С	С	С		ü
CDC157	1	A	G	А	G	с	с	с		п
CDC227 SH521	1	A	G G	A	G G	c c	c c	C C		п
FZ16	i	A	G	Â	Ğ	с	с	С		ü
ZJ662	I	А	G	А	G	с	С	с		п
ZJ5257 ZJ369	I	A	G	A	G	C C	C C	C C		п
44/12	i	A	G	A	G	c	c	с		п
101/09	1	Λ	G	А	G	с	с	с	type2	п
82 WL13/07	I	A	G	A	G	C C	C C	C C	type2	п
ZJ612	1	A A	G	A	G	c	c	c		п
FZ1/23	i	А	G	А	Ğ	с	С	С		п
nc108/07	1	A	G	A	G	с	с	с		п
nc193 JX5005	ł	A	G	A	G	C C	C C	C C		п
353	i	A	G	A	G	č	č	č		ii ii
SH29	I	Α	G	А	G	с	С	С		п
SH166	1	Α	G	А	G	С	С	с		п
FZ135	I	А	G	А	G	с	с	С		п
WL55/06	IV	A	G	А	G	с	с	с		п
FZ509 WL110	IV IV	A	G G	A	G G	C C	C C	C C		11 11
WL161	IV	A	G	A	G	č	č	č		ii ii
113	IV	А	G	А	G	с	С	С		II
WZ106	IV	A	G	А	G	с	с	С		п
SHD3 FZ18/05	IV IV	A	G G	A	G	C C	C C	C C		п
WZ22/12	IV	A	G	А	G	с	с	с		п
NC15	IV	А	G	А	G	с	с	с		11
SH16531 59/14	IV ND	A	G	A	G G	c	c c	C C		п
WZ69/11	ND	A	G	A	G	c	c	c		п
CDC17	1	A	G	A	G	T	c	с	1	1
ZJ338	I	Ā	G		G	т	c	c		I III
ZJ338 WL266	IV	A	G	A	G	T	c	c		111 111
ZJ28	1	A	G	A	G	Ť	с	с		ш
5	1	А	G	А	G	Т	С	С	type3	III
ZJ22	IV	А	G	А	G	Т	с	с		ш
WL48 117	IV IV	A A	G	A	G	T T	c	c c		ш
		A	G	A	G	т	c c		1	ш
ZJ17 2073	ND ND	A	G	A	G	T	c	c c		111 111
669	IV	A	G	A	G	Ť	č	č		IV
553	I	А	G	А	А	С	С	С	í	IV
SH111	i	A	G	A	A	č	с	c	type4	iv
JX06	IV	А	G	А	А	С	С	С	., bet	IV
JX59	iv	А	G	A	A G	C T	C C	C C	1	NC
WZ43/09 JX22273	I IV	A	A	т	G	т	c	c		I
JX22273 1599	ND	A	A G	A	G	c	c	G		1
WL183/06	1		G	A	G	с	т	c		NC
ZJ123	i	A C	G	A	G	č	ċ	č		NC

Table 3. Distribution of VNTR and SNP types in M. intracellulare.

VNTD almatan			SNP	type		
VNTR cluster	1	2	3	4	Singletons	Total
Cluster 1	13		1		3	17
Cluster 2	2	41				43
Cluster 3			9			9
Cluster 4			1	3		4
Singletons	1			1	2	4
Total	16	41	11	4	5	77

VNTR: variable-number tandem repeat; SNP: single-nucleotide polymorphism.

Cluster	NTM infection n (%)	NTM colonization n (%)	Р	Presence of a cavity n (%)	Absence of a cavity n (%)	Р
Cluster 1	13 (27.1)	1 (3.4)		11 (26.2)	3 (8.6)	
Cluster 2	28 (58.3)	18 (62.1)		21 (50.0)	25 (71.4)	
Cluster 3	2 (4.2)	7 (24.1)	0.007	5 (11.9)	4 (11.4)	0.042
Cluster 4	3 (6.3)	1 (3.4)		4 (9.5)	0 (0.0)	
Singletons	2 (4.2)	2 (6.9)		1 (2.4)	3 (8.6)	

Table 4. Distribution of NTM infection or colonization, or presence or absence of a cavity among the different VNTR clusters.

NTM: nontuberculous mycobacterial; VNTR: variable-number tandem repeat

Discussion

VNTR genotyping provides a rapid, effective way to estimate the presence of clonal complexes within linked strains [42]; it was recently applied to study genetic variability in clinical strains of *M. intracellulare* [20,24].

This study aimed to compare 16S rRNA sequencing and VNTR genotyping of *M. intracellulare* strains isolated from 48 patients with NTM and 29 patients without NTM. SNP genotyping identified seven point mutations in 16S rRNA, and four SNP patterns were identified (representing 97% of all tested strains). Eight loci VNTRs were amplified efficiently from all strains, MIN2, and VNTR1, 2, 3, 7, 10, 12, and 13.

The statistical power of the VNTR technique was assessed for the epidemiological characterization of *M. intracellulare*. The global discriminatory index of 0.996 confirmed the possible advantage of this technique. Interestingly, Ichikawa *et al.* [24] and Dauchy *et al.* [20] reported a Hunter-Gaston discrimination index of 0.98 in the multiple-locus VNTR analysis (MLVA) of *M. intracellulare*. In this study, 69 VNTR types were obtained from 77 *M. intracellulare* strains.

VNTR12 exhibited the highest allelic diversity, and VNTR3 was the most homogeneous marker. A higher discriminatory index was detected for VNTR3 and VNTR12 than previously reported by Ichikawa *et al.* [24]. The overall HGDI of the eight loci of the MIRU-VNTR method was 0.996. MIN2 also had a high discriminatory index, as previously described by Ichikawa *et al.* [24]. Overall, VNTR genotyping identified eight loci with high allelic diversity, and 95% were clustered into four VNTR clusters.

Identical VNTR allele profiles were observed in 11 strains from 4 patients, indicating that VNTR typing was a reliable method and that the strains were genetically stable over the indicated time frames, consistent with previous reports [20,24]. The MIN2 discrimination index was consistent with results reported by Dauchy *et al.* [20]; however, the discrimination index of VNTR3 and VNTR12 was higher, as described by Ichikawa *et al.* [24].

Linkage disequilibrium among VNTR loci has been observed in high-incidence areas of M. tuberculosis, suggesting that this bacterium underwent clonal evolution [43]. As clonal evolution exists in almost all bacterial strains, phylogenetic analyses based on VNTR data might not yield correct phylogenetic results [44]. High-throughput whole genome sequencing (WGS) is one of the best methods to study bacterial strain relationships [45], but WGS is expensive, labor intensive, and requires highly trained professionals. Similar to VNTR, SNP of certain genes can be used to genotype bacterial strains [27]. 16S rRNA is one of the most conserved genes, and thus is often used for bacterial identification and genotyping [46]. The mutation rate of ribosome genes is extremely low; therefore, these genes can be reliably used to represent some genotypes. Furthermore, ribosomal sequence typinghas been demonstrated to accurately summarize the relationships between bacterial genomes [47].

This study suggested that both 16S rRNA sequencing and VNTR genotyping of *M. intracellulare* can be used to distinguish four subtypes of *M. intracellulare*, which corresponded between the two methods; therefore, VNTRs may represent an effective, user-friendly, low-cost typing technique. Nevertheless, this study has some limitations. Although all the studied strains were derived from sputum, no representative animal and environmental sources were identified. The value of the VNTR selected markers may represent linkage disequilibrium and/or clonal evolution. In the future, more strains from different sources should be analyzed in order to characterize precisely the phylogeny of both environmental and pathogenic strains of *M. intracellulare*.

Conclusions

The results of SNP typing of 16S rDNA sequences and eight VNTR loci clusters were consistent with one another. VNTR clusters were related toNTM infection and the presence of a cavity. VNTR could be considered as a genotype tool in epidemiological research of *M. intracellulare*. Nevertheless, analyzing more strains from different sources is required to confirm these results.

Acknowledgements

This work was partially supported by Natural Science Foundation of China (Grant No. 816660555).

Authors' contributions

KSC and YYZ contributed to conception and design; KSC, YYZ and YPP contributed to acquisition of data, or analysis and interpretation of data; KSC and YYZ were involved in drafting the manuscript or revising it critically for important intellectual content; all authors gave final approval of the version to be published.

References

- De Groote MA, Pace NR, Fulton K, Falkinham JO 3rd (2006) Relationships between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl Environ Microbiol 72:7602-7606. doi:10.1128/AEM.00930-06.
- 2. Falkinham JO 3rd (2011) Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis 17:419-424. doi:10.3201/eid1703.101510.
- Tanaka E, Kimoto T, Matsumoto H, Tsuyuguchi K, Suzuki K, Nagai S, Shimadzu M, Ishibatake H, Murayama T, Amitani R (2000) Familial pulmonary *Mycobacterium avium* complex disease. Am J Respir Crit Care Med 161:1643-1647. doi:10.1164/ajrccm.161.5.9907144.
- 4. Field SK, Fisher D, Cowie RL (2004) *Mycobacterium avium* complex pulmonary disease in patients without HIV infection. Chest 126:566-581. doi:10.1378/chest.126.2.566.
- van Ingen J, Bendien SA, de Lange WC, Hoefsloot W, Dekhuijzen PN, Boeree MJ, van Soolingen D (2009) Clinical relevance of non-tuberculous mycobacteria isolated in the Nijmegen-Arnhem region, The Netherlands. Thorax 64:502-506. doi:10.1136/thx.2008.110957.
- Panagiotou M, Papaioannou AI, Kostikas K, Paraskeua M, Velentza E, Kanellopoulou M, Filaditaki V, Karagiannidis N (2014) The epidemiology of pulmonary nontuberculous mycobacteria: data from a general hospital in Athens, Greece, 2007-2013. Pulm Med 2014:894976. doi:10.1155/2014/894976.
- Jang MA, Koh WJ, Huh HJ, Kim SY, Jeon K, Ki CS, Lee NY (2014) Distribution of nontuberculous mycobacteria by multigene sequence-based typing and clinical significance of isolated strains. J Clin Microbiol 52:1207-1212. doi:10.1128/JCM.03053-13.
- Ryoo SW, Shin S, Shim MS, Park YS, Lew WJ, Park SN, Park YK, Kang S (2008) Spread of nontuberculous mycobacteria from 1993 to 2006 in Koreans. J Clin Lab Anal 22:415-420. doi:10.1002/jcla.20278.
- 9. Boddinghaus B, Wolters J, Heikens W, Bottger EC (1990) Phylogenetic analysis and identification of different serovars of *Mycobacterium intracellulare* at the molecular level. FEMS Microbiol Lett 58:197-203.
- Shin SJ, Lee BS, Koh WJ, Manning EJ, Anklam K, Sreevatsan S, Lambrecht RS, Collins MT (2010) Efficient differentiation of *Mycobacterium avium* complex species and subspecies by use of five-target multiplex PCR. J Clin Microbiol 48:4057-4062. doi:10.1128/JCM.00904-10.

- Schweickert B, Goldenberg O, Richter E, Gobel UB, Petrich A, Buchholz P, Moter A (2008) Occurrence and clinical relevance of *Mycobacterium chimaera* sp. nov., Germany. Emerg Infect Dis 14:1443-1446. doi:10.3201/eid1409.071032.
- Iakhiaeva E, McNulty S, Brown Elliott BA, Falkinham JO 3rd, Williams MD, Vasireddy R, Wilson RW, Turenne C, Wallace RJ Jr (2013) Mycobacterial interspersed repetitive-unitvariable-number tandem-repeat (MIRU-VNTR) genotyping of *mycobacterium intracellulare* for strain comparison with establishment of a PCR-based database. J Clin Microbiol 51:409-416. doi:10.1128/JCM.02443-12.
- Wallace Jr RJ, Zhang Y, Brown-Elliott BA, Yakrus MA, Wilson RW, Mann L, Couch L, Girard WM, Griffith DE (2002) Repeat positive cultures in *Mycobacterium intracellulare* lung disease after macrolide therapy represent new infections in patients with nodular bronchiectasis. J Infect Dis 186:266-273. doi:10.1086/341207.
- Wallace RJ, Jr., Zhang Y, Brown BA, Dawson D, Murphy DT, Wilson R, Griffith DE (1998) Polyclonal *Mycobacterium avium* complex infections in patients with nodular bronchiectasis. Am J Respir Crit Care Med 158:1235-1244. doi:10.1164/ajrccm.158.4.9712098.
- Kim BJ, Choi BS, Lim JS, Choi IY, Kook YH, Kim BJ (2012) Complete genome sequence of *Mycobacterium intracellulare* clinical strain MOTT-64, belonging to the INT1 genotype. J Bacteriol 194:3268. doi:10.1128/JB.00471-12.
- Kim BJ, Choi BS, Lim JS, Choi IY, Lee JH, Chun J, Kook YH, Kim BJ (2012) Complete genome sequence of *Mycobacterium intracellulare* clinical strain MOTT-02. J Bacteriol 194:2771. doi:10.1128/JB.00365-12.
- Kim BJ, Choi BS, Lim JS, Choi IY, Lee JH, Chun J, Kook YH, Kim BJ (2012) Complete genome sequence of *Mycobacterium intracellulare* strain ATCC 13950(T). J Bacteriol 194:2750. doi:10.1128/JB.00295-12.
- Telenti A, Marchesi F, Balz M, Bally F, Bottger EC, Bodmer T (1993) Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol 31:175-178.
- Park JH, Shim TS, Lee SA, Lee H, Lee IK, Kim K, Kook YH, Kim BJ (2010) Molecular characterization of *Mycobacterium intracellulare*-related strains based on the sequence analysis of hsp65, internal transcribed spacer and 16S rRNA genes. J Med Microbiol 59:1037-1043. doi:10.1099/jmm.0.020727-0.
- Dauchy FA, Degrange S, Charron A, Dupon M, Xin Y, Bebear C, Maugein J (2010) Variable-number tandem-repeat markers for typing *Mycobacterium intracellulare* strains isolated in humans. BMC Microbiol 10:93. doi:10.1186/1471-2180-10-93.
- Fernandez-Silva JA, Abdulmawjood A, Akineden O, Drager K, Klawonn W, Bulte M (2012) Molecular epidemiology of *Mycobacterium avium subsp. paratuberculosis* at a regional scale in Germany. Res Vet Sci 93:776-782. doi:10.1016/j.rvsc.2011.12.005.
- 22. Wong YL, Ong CS, Ngeow YF (2012) Molecular typing of *Mycobacterium abscessus* based on tandem-repeat polymorphism. J Clin Microbiol 50:3084-3088. doi:10.1128/JCM.00753-12.
- Bull TJ, Sidi-Boumedine K, McMinn EJ, Stevenson K, Pickup R, Hermon-Taylor J (2003) Mycobacterial interspersed repetitive units (MIRU) differentiate *Mycobacterium avium* subspecies paratuberculosis from other species of the *Mycobacterium avium* complex. Mol Cell Probes 17:157-164.

- Ichikawa K, Yagi T, Inagaki T, Moriyama M, Nakagawa T, Uchiya K, Nikai T, Ogawa K (2010) Molecular typing of *Mycobacterium intracellulare* using multilocus variablenumber of tandem-repeat analysis: identification of loci and analysis of clinical isolates. Microbiology 156:496-504. doi:10.1099/mic.0.030684-0.
- 25. Thibault VC, Grayon M, Boschiroli ML, Hubbans C, Overduin P, Stevenson K, Gutierrez MC, Supply P, Biet F (2007) New variable-number tandem-repeat markers for typing *Mycobacterium aviumsubsp. paratuberculosis* and *M. avium* strains: comparison with IS900 and IS1245 restriction fragment length polymorphism typing. J Clin Microbiol 45:2404-2410. doi:10.1128/JCM.00476-07.
- 26. Lovett ST (2004) Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 52:1243-1253. doi:10.1111/j.1365-2958.2004.04076.x.
- Castellanos E, Aranaz A, de Juan L, Alvarez J, Rodriguez S, Romero B, Bezos J, Stevenson K, Mateos A, Dominguez L (2009) Single nucleotide polymorphisms in the IS900 sequence of *Mycobacterium avium subsp. paratuberculosis* are strain type specific. J Clin Microbiol 47:2260-2264. doi:10.1128/JCM.00544-09.
- Luo T, Yang C, Gagneux S, Gicquel B, Mei J, Gao Q (2012) Combination of single nucleotide polymorphism and variablenumber tandem repeats for genotyping a homogenous population of *Mycobacterium tuberculosis* Beijing strains in China. J Clin Microbiol 50:633-639. doi:10.1128/JCM.05539-11.
- Iwamoto T, Saito H (2006) Comparative study of two typing methods, hsp65 PRA and ITS sequencing, revealed a possible evolutionary link between *Mycobacterium kansasii* type I and II isolates. FEMS Microbiol Lett 254:129-133. doi:10.1111/j.1574-6968.2005.00013.x.
- Gutacker MM, Mathema B, Soini H, Shashkina E, Kreiswirth BN, Graviss EA, Musser JM (2006) Single-nucleotide polymorphism-based population genetic analysis of *Mycobacterium tuberculosis* strains from 4 geographic sites. J Infect Dis 193:121-128. doi:10.1086/498574.
- Cloud JL, Neal H, Rosenberry R, Turenne CY, Jama M, Hillyard DR, Carroll KC (2002) Identification of *Mycobacterium spp*. by using a commercial 16S ribosomal DNA sequencing kit and additional sequencing libraries. J Clin Microbiol 40:400-406.
- 32. Yang C, Luo T, Sun G, Qiao K, Sun G, DeRiemer K, Mei J, Gao Q (2012) *Mycobacterium tuberculosis* Beijing strains favor transmission but not drug resistance in China. Clin Infect Dis 55:1179-1187. doi:10.1093/cid/cis670.
- Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol 26:2465-2466.
- Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, Whittam TS (1986) Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51:873-884.
- 35. Balestre M, Von Pinho RG, Souza JC, Lima JL (2008) Comparison of maize similarity and dissimilarity genetic coefficients based on microsatellite markers. Genet Mol Res 7:695-705.
- Devulder G, Perouse de Montclos M, Flandrois JP (2005) A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol 55:293-302. doi:10.1099/ijs.0.63222-0.

- 37. Kim BJ, Jeong J, Lee SH, Kim SR, Yu HK, Park YG, Kim KJ, Kook YH, Kim BJ (2012) *Mycobacterium koreense sp.* nov., a slowly growing non-chromogenic species closely related to Mycobacterium triviale. Int J Syst Evol Microbiol 62:1289-1295. doi:10.1099/ijs.0.033274-0.
- Toney N, Adekambi T, Toney S, Yakrus M, Butler WR (2010) Revival and emended description of 'Mycobacterium paraffinicum' Davis, Chase and Raymond 1956 as Mycobacterium paraffinicum sp. nov., nom. rev. Int J Syst Evol Microbiol 60:2307-2313. doi:10.1099/ijs.0.016972-0.
- 39. Tortoli E, Rindi L, Garcia MJ, Chiaradonna P, Dei R, Garzelli C, Kroppenstedt RM, Lari N, Mattei R, Mariottini A, Mazzarelli G, Murcia MI, Nanetti A, Piccoli P, Scarparo C (2004) Proposal to elevate the genetic variant MAC-A, included in the *Mycobacterium avium* complex, to species rank as *Mycobacterium chimaera sp. nov.* Int J Syst Evol Microbiol 54:1277-1285. doi:10.1099/ijs.0.02777-0.
- Ong CS, Ngeow YF, Yap SF, Tay ST (2010) Evaluation of PCR-RFLP analysis targeting hsp65 and rpoB genes for the typing of mycobacterial isolates in Malaysia. J Med Microbiol 59:1311-1316. doi:10.1099/jmm.0.021139-0.
- 41. NCBI/BLAST Home (2016) Available: http://blast.ncbi.nlm.nih.gov. Accessed 2 June 2016.
- 42. Mazars E, Lesjean S, Banuls AL, Gilbert M, Vincent V, Gicquel B, Tibayrenc M, Locht C, Supply P (2001) Highresolution minisatellite-based typing as a portable approach to global analysis of *Mycobacterium tuberculosis* molecular epidemiology. Proc Natl Acad Sci USA 98:1901-1906. doi:10.1073/pnas.98.4.1901.
- 43. Supply P, Warren RM, Banuls AL, Lesjean S, Van Der Spuy GD, Lewis LA, Tibayrenc M, Van Helden PD, Locht C (2003) Linkage disequilibrium between minisatellite loci supports clonal evolution of *Mycobacterium tuberculosis* in a high tuberculosis incidence area. Mol Microbiol 47:529-538.
- 44. Estoup A, Jarne P, Cornuet JM (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 11:1591-1604.
- 45. Luo T, Yang C, Peng Y, Lu L, Sun G, Wu J, Jin X, Hong J, Li F, Mei J, DeRiemer K, Gao Q (2014) Whole-genome sequencing to detect recent transmission of *Mycobacterium tuberculosis* in settings with a high burden of tuberculosis. Tuberculosis (Edinb) 94:434-440. doi:10.1016/j.tube.2014.04.005.
- Duduk B, Paltrinieri S, Lee IM, Bertaccini A (2013) Nested PCR and RFLP analysis based on the 16S rRNA gene. Methods Mol Biol 938:159-171. doi:10.1007/978-1-62703-089-2_14.
- Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, Wimalarathna H, Harrison OB, Sheppard SK, Cody AJ, Maiden MC (2012) Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 158:1005-1015. doi:10.1099/mic.0.055459-0.

Corresponding author

Kaisen Chen, MS Department of clinical laboratory, the First Affiliated Hospital of Nanchang University, No.17, Yongwaizheng Street

Nanchang 330006, China Phone: +86-791-88692594 Fax: +86-21-64085875 Email: Chenks100@126.com

Conflict of interests: No conflict of interests is declared.