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Abstract 
Parasitic infections are an important cause of global morbidity and mortality and are highly prevalent in "underdeveloped" countries. The 

presence of parasitic infections is associated with modulation of the immune system and changes in the response to bacterial and viral vaccines. 

The objective of this review was to compile, summarize and analyze information about immunomodulation by parasitic infections and its 

effects on the immune response to vaccines. We also identified the parasites most associated with immunomodulation of vaccine responses and 

those vaccines most affected. In addition, articles evaluating the effect of chemoprophylaxis for malaria on the immune response against 

vaccines were considered. The most affected vaccines are Bacillus Calmette-Guérin and bacterial polysaccharide vaccines. Malaria is the 

infection most associated with decreased response to vaccines; however, there are discordant results. Chemoprophylaxis for malaria did not 

change the immune response to vaccination. While parasitic infections can alter the immune response to vaccination, it is important to clarify 

the discrepancies and establish the mechanisms. 
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Introduction 
Infection and poverty are intrinsically linked 

problems that perpetually challenge human health. 

Malnutrition arises from poverty and is a major 

determinant of morbidity and mortality by infectious 

diseases. Malnutrition can determine the severity of 

infection, as well as the risk of death. A poor body 

condition weakens the immune system and increases 

the risk of infection, which leads to loss of appetite, and 

then, loss of nutrients that are used in the defense 

against infection. This leads to a vicious cycle with 

detrimental outcomes (malnutrition → 

immunosuppression → infection → increased 

malnutrition → increased immunosuppression → 

increased infection) [1,2].  

Hunger and malnutrition, with few exceptions, 

result from "economic poverty" [3], which affects 

quality of life and lifestyle [3,4]. The populations with 

the highest poverty, and then, with the worst living 

conditions, are the most affected by parasitic infections. 

Tropical and subtropical zones of the world have, in 

addition to the greatest number of poor people, the 

optimal natural and social conditions for the maximum 

spread of parasitic infections. While populations living 

in temperate and frigid zones also live in poverty, the 

natural conditions are generally inadequate to support 

parasites development, and these infections are absent 

or very scarce. Human parasites have a global 

distribution, but undoubtedly they reach 

disproportionate levels in the tropics [5-7]  

In tropical zones, patients are typically infected 

with multiple parasitic infections at once. It is already 

known that parasitic infections are associated with 

immune tolerance [8-10], and this tolerance allows the 

survival of the parasite in the host and minimizes the 

damage [11]. This means that infections by various 

parasites cause a nonspecific effect on the immune 

response. For that reason, the susceptibility to 

infections increases and acquired immunity is altered 

by limitation of the inflammatory response, which is 

essential to generate the immune response [12]. 

The life cycle of several parasites involves an insect 

that operates as a vector or an animal as a reservoir 

(malaria, leishmaniosis, Chagas disease, 

trypanosomosis, filarioidosis, onchocercidosis, etc.). 

Vector-borne diseases account for more than 17% of all 

infectious diseases and cause more than 1 million of 

deaths every year [13]. This situation implies that 

natural and social conditions contribute to the 

reproduction and transmission of parasites and their 



Alvarez-Larrotta et al. – Parasitosis modify immune response to vaccines    J Infect Dev Ctries 2018; 12(10):812-823. 

813 

vectors. Among the most prevalent parasitic diseases in 

the world are geohelminthosis, malaria, schistosomosis, 

onchocercidosis, filarioidosis and leishmaniosis. Figure 

1 shows the wide territory covered by parasitic 

infections, and their importance in public health. It is 

crucial to note that in tropical areas, there is abundant 

diversity of parasites and the greatest risk to acquire 

these infections. 

The parasitic infections mentioned above (except 

leishmaniosis) can cause chronic and asymptomatic 

infections and constantly stimulate the immune system, 

which leads to a greater modulation of the immune 

system, i.e. high regulation or control of the immune 

response [14]. In addition, multiple co-infections can 

occur in different endemic areas and complicate the 

scenario. For geohelminthosis, filarioidosis and 

trematodiosis, a high regulation of the immune response 

has been described [15-17]. This regulation is 

associated with tolerance to the parasitic infections, 

which leads to: a) limitation of the acute immune 

response against other pathogens; b) reduction of the 

antigen-specific response; and c) deficiency in the 

acquired immune response [15-17]. Malaria usually is 

an acute disease, but can also be a chronic 

asymptomatic infection, which is mostly associated 

with increased regulation of the immune response 

[18,19]. 

Helminthosis (the most widely distributed parasite) 

is caused by extracellular parasites, and therefore is 

associated with a Th2 immune response. The chronicity 

of infection results in the constant stimulation of the 

immune system [20]. The Th2 response is characterized 

by the increase of regulatory-associated cytokines, such 

as interleukin-10 (IL-10) and transforming growth 

factor beta (TGF-β). These cytokines condition the 

differentiation of immune cells with regulatory profiles 

that promote tolerance in the infected subject [21]. The 

immune cells differentiated by these cytokines are the 

regulatory T cells (Treg) and the macrophages with 

alternative activation (M2). These cells induce 

amplification of the production of regulatory cytokines 

(IL-10 and TGF-β) and, therefore, more differentiation 

of these cell types [22]. Several studies have associated 

parasitic infections with increased IL-10 and regulatory 

cells [23-25]. This modulation limits the proliferation 

of immune effector cells such as CD4+ T, CD8+ T, and 

natural killer cells (NK), which are important in 

vaccination and defense against other pathogens. The 

limitation of the effector T cells prevents the 

amplification of the immune response necessary to 

develop adequate immune memory [26].  

Figure 1. Global epidemiology of parasitic infections according to latitude. 

Malaria (M): number of cases reported in 2014 [71]; Geohelminthosis (H): number of children requiring preventive therapy (TP) in 2014 [72]; Leishmaniosis 
(L): number of cases of cutaneous and visceral Leishmaniosis reported in 2013 [73]; Filarioidosis (F): number of people requiring preventive therapy (TP) 

in 2014 [74]; Schistosomosis (S): Number of people treated for this disease in 2014 [75]; Image taken and modified from: 

https://commons.wikimedia.org/w/index.php?curid=3231806. By Frank Bennett. 
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Table 1. Effect of parasitic infections on the immune response to vaccines. 

Parasitic 

infection 
Reference 

Population age 

range 

Exposition 

factor 
Average (CI) p 

Authors’ 

conclusion 

Tetanus toxoid 

Filarioidosis 

Cooper et al., 

1999 [33] 

Ecuador 

Subjects 

(5-70 years old) 

Infection by 

Onchocerca 

volvulus 

Study groups 
Antibody levels 

UI/mL 

NS 

Infection by O. 

volvulus does not 

affect the 

generation of 

tetanus protection. 

Infected 

(n = 193) 

1.32 (1.15-

1.74) 

Uninfected 

(n = 85) 

1.41 (0.84-

1.44) 

Prost et al., 

1983 [38] 

Burkina Faso 

Subjects 

(9-34 years old) 

Infection by 

O. volvulus 

Study groups 
Antibody levels 

UI/mL 

0.001 

Infection by O. 

volvulus decreases 

humoral immunity. 

Infected 

(n = 28) 

0.07 (0.056-

0.084) 

Uninfected 

(n = 27) 

2.41 (1.93-

2.90) 

Nookala et al., 

2004 [39] India 

Subjects, adults 

(20-66 years old) 

Infection by 

Wuchereria 

bancrofti 

Study groups 
Antibody levels 

UI/mL 

0.0002 

Infection by W. 

bancrofti altered 

the immune 

response against 

tetanus toxoid. 

Infected 

(n = 40) 
149 (73.5-583) 

Uninfected 

(N = 10) 

910.2 (416.5-

1989) 

Malhotra et al., 

2015 [40] Kenya 

Mothers/children 

(> 14 years old/ 

6-36 months old) 

Exposed in 

utero to 

Brugia malayi 

or W. 

bancrofti 

Sensitized 

(n = 167) 

NI NS 

The levels of IgG 

against tetanus 

toxoid were not 

affected in children 

sensitized by 

filariasis. 

Unexposed 

(n = 110) 

Malaria 

Greenwood et 

al., [35] 1972 

Nigeria 

Children 

(6 months-6 

years old) 

Acute malaria 

by 

Plasmodium 

falciparum 

Infected 

(n = 51) 

NI < 0,02 

In children with 

acute P. falciparum 

malaria, a form of 

immunosuppressio

n was 

demonstrated. 

Uninfected 

(N = 34) 

Corrigall et al., 

1988 [49] Papua 

New Guinea 

Children 

(8-11 years old) 

Asymptomatic 

malaria by P. 

falciparum, P. 

vivax and P. 

malariae 

Infected 

(n = 51) 

NI > 0,1 

Malaria did not 

affect the immune 

response against 

tetanus toxoid 
Uninfected 

(N = 34) 

Cumberland et 

al., 2007 [36] 

Kenya 

Pregnant women 

(> 14 years old) 

Placental 

malaria by     

P. falciparum 

Study groups 
Antibody levels 

UI/mL 

NI 

IgG levels are 

significantly low in 

women with active-

chronic or past 

placental malaria 

Infected 

(n = 312) 

2.39 (1.46-

4.12) 

Uninfected 

(n = 291) 

3.64 (3.13-

4.23) 

van Riet et al., 

2007 [50] 

Gabon 

Children 

(7-12 years old) 

Acute malaria 

by P. 

falciparum 

Infected 

(n = 11) 

NI NI 

Acute P. 

falciparum 

infection did not 

affect the response 

against the boosts 

of the tetanus 

toxoid vaccine. 

Uninfected 

(n = 42) 

Malhotra et al., 

2015 [40] Kenya 

Mothers/children 

(> 14 years old/ 

6-36 months old) 

Exposed in 

utero to                    

P. falciparum 

Sensitized 

(n = 188) 

NI NS 

The levels of IgG 

against tetanus 

toxoid vaccine 

were not affected in 

children sensitized 

by P. falciparum. 

Unexposed 

(n = 179) 

Schistosomosis 
Malhotra et al., 

2015 [40] Kenya 

Mothers/children 

(> 14 years old/ 

6-36 months old) 

Exposed in 

utero to                    

Schistosoma 

haematobium 

Sensitized 

(n = 238) 

NI NS 

The levels of IgG 

against tetanus 

toxoid vaccine 

were not affected in 

children sensitized 

by S. haematobium. 

Unexposed 

(n = 90) 
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Table 1 (continued). Effect of parasitic infections on the immune response to vaccines. 

Diphtheria toxoid 

Parasitic 

infection 
Reference 

Population 

age range 

Exposition 

factor 
Average (CI) p 

Author’s 

conclusion 

Filarioidosis 
Malhotra et al., 

2015 [40] Kenya 

Mothers/children 

(> 14 years old/ 

6-36 months old) 

Exposed in 

utero to B. 

malayi or W. 

bancrofti 

Study groups Antibody levels 

NS 

The levels of IgG 

against diphtheria 

toxoid vaccine 

were not affected in 

children sensitized 

by filariasis. 

Sensitized 

(n = 167) 
NI 

Unexposed 

(n = 110) 
NI 

Malaria 
Malhotra et al., 

2015 [40] Kenya 

Mothers/children 

(> 14 years old/ 

6-36 months old) 

Exposed in 

utero to                    

P. falciparum 

Sensitized 

(n = 188) 

NI NS 

In children 

sensitized by P. 

falciparum, 

decreased levels of 

IgG against 

diphtheria toxoid 

vaccine were 

observed. 

Unexposed 

(n = 179) 

Schistosomosis 
Malhotra et al., 

2015 [40] Kenya 

Mothers/children 

(> 14 years old/ 

6-36 months old) 

Exposed in 

utero to                    

S. 

haematobium 

Sensitized 

(n = 238) 

NI NS 

The levels of IgG 

against diphtheria 

toxoid vaccine 

were not affected in 

children sensitized 

by S. haematobium. 

Unexposed 

(n = 90) 

BCG 

Parasitic 

infection 

Author and 

place 

Population 

Age range 

Exposition 

factor 
Average (CI) p 

Author’s 

conclusion 

Geohelminthosis 

Elias D et al., 

2001 [51] 

Ethiopia 

Students 

(18-24 years old) 

Antihelmintic 

treatment 

Study groups IFNγ levels 

0.04 

The use of 

antihelmintics 

potentiated the 

immune response 

against BCG 

vaccine. 

Albendazole 

(n = 29) 

170 pg/mL 

(136-204 

pg/mL) 

Placebo 

(n = 31) 

70 pg/mL 

(56-84 pg/mL) 

Lule et al., 2015 

[52] Uganda 

Children 

(1 – 5 years old) 

Infection with 

hookworm 

Study groups IFNγ levels 

NI 

Geohelminth 

infection was 

associated with a 

decrease in IFNγ 

after stimulation 

with M. 

tuberculosis in 

vitro. 

Infected 

179 pg/mL 

(143.5-214.8 

pg/mL) 

Uninfected 

123 pg/mL 

(98.4-147.6 

pg/mL) 

Malaria 

Lule et al., 2015 

[52] Uganda 

Children (1 – 5 

years old) 

Asymptomatic 

malaria 

Study groups IFNγ levels 

NI 

Asymptomatic 

malaria was 

associated with 

decreased IFNγ 

after stimulation 

with M. 

tuberculosis 

Infected 

174 pg/mL 

(139.2-208.8 

pg/mL) 

Uninfected 

82 pg/mL 

(65.6-98.4 

pg/mL) 

Walther et al., 

2012 [53] 

Gambia 

Children 

(Newborn -12 

months old) 

Placental 

malaria 

Study groups 
T cells 

CD4+IFN+ 

0.026 

Placental malaria 

generated a weak 

response of IFNγ to 

tuberculin at 12 

months of age. 

Infected 

(n = 7) 

0.007% 

(0.002-0.007%) 

Uninfected 

(n = 28) 

0.000% 

(0.000-0.002 

%) 

Schistosomosis 

and Filarioidosis 

Badawy et al. 

2013 [54] Egypt 

Children 

(6 months) 

Infection by S. 

mansoni or W. 

bancrofti 

Study groups Tuberculin 

0.000 

The infection was 

associated with a 

lower response to 

tuberculin. 

Infected (n = 

63) 

< 5mm: 33 

children 

Uninfected 

(n = 187) 

< 5mm: 22 

children 
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Table 1 (continued). Effect of parasitic infections on the immune response to vaccines. 

Bacterial polysaccharides 

Parasitic 

infection 
Reference 

Population 

Age range 

Exposition 

factor 
Average (CI)a p 

Author’s 

conclusion 

Malaria 

Williamson et 

al., 1978 [55] 

Nigeria 

Children 

(6 months - 6 

years old) 

Malaria by P. 

falciparum 

Study groups Antibody titers 

S. typhi 

< 0.01 

Mening. 

< 0.001 

Malaria was 

associated with 

decreased titers of 

antibodies against 

S. typhi and group 

C meningococcal 

polysaccharide 

when the vaccine 

was administered at 

the time of 

infection. 

Infected 

(n = 79) 

S. typhi: 2.1 

(log2) 

Meningococcal: 

3.1 (log2) 

Uninfected 

(n = 40) 

S. typhi: 1.4 

(log2) 

Meningococcal: 

.3.4 (log2) 

Greenwood et 

al., 1980 [56] 

Nigeria 

Subjects 

(all ages) 

Asymptomatic 

malaria by 

P. falciparum 

Infected 

(n = 316) 

NI < 0.02 

The antibody 

response against 

group C 

meningococcal 

polysaccharide was 

lower in cases with 

high parasitaemia 

within each age 

group 

Uninfected 

(n = 44) 

Usen et al., 

2000 [57] 

Gambia 

Children 

(12-30 months 

old) 

Malaria by P. 

falciparum 

Study groups Antibody levels 

< 0.001 

Infected children 

with P. falciparum 

had lower levels of 

antibodies against 

Haemophilus 

influenzae type B. 

Infected 

(n = 57 

6.3 µg/mL 

(0.07-285 

µg/mL) 

Uninfected 

(n = 60) 

23 µg/mL 

(0.36-555 

µg/mL) 

Malhotra et al., 

2015 [40] Kenya 

Mothers/children 

(> 14 years old/ 

6-36 months old) 

Exposed in 

utero to P. 

falciparum 

Sensitized 

(n = 188) 

NI 0.005 

Children sensitized 

by P. falciparum 

had significantly 

lower Haemophilus 

influenzae type B 

specific IgG levels. 

Unexposed 

(n = 179) 

Filarioidosis 
Malhotra et al., 

2015 [40] Kenya 

Mothers/children 

(> 14 years old/ 

6-36 months old) 

Exposed in 

utero to 

B. malayi or 

W. bancrofti 

Sensitized 

(n = 167) 

NI 0.007 

Children sensitized 

by filarioidosis had 

significantly lower 

Haemophilus 

influenzae type B 

specific IgG levels. 

Unexposed 

(n = 110) 

Schistosomosis 
Malhotra et al., 

2015 [40] Kenya 

Mothers/children 

(> 14 years old/ 

6-36 months old) 

Exposed in 

utero to S. 

haematobium 

Sensitized 

(n = 238) 

NI 0.034 

Children sensitized 

by S. haematobium 

had significantly 

lower Haemophilus 

influenzae type B 

specific IgG levels. 

Unexposed 

(n = 90) 
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Table 1 (continued). Effect of parasitic infections on the immune response to vaccines. 

Others vaccines 

Malaria 

Simondon et al., 

1999 [58] Senegal 

Pertussis toxin 

Children 

(1-2 months old) 

Exposed to P. 

falciparum 

Study groups 
Antibody titres 

(GMT) 

< 0.05 

The antibody 
response to pertussis 

toxin was lower in 

infants infected with 
malaria than in a 

group of healthy 

infants. 

Infected 

(n = 66) 
81.1 (72.4-91.2) 

Uninfected 
(n = 115) 

97.3 (87.1-107.1) 

Malhotra et al., 

2015 [40] Kenya 

Hepatitis B 

Mothers/children 

(> 14 years old/ 6-36 

months old) 

Exposed in 

utero to P. 

falciparum 

Sensitized 

(n = 188) 

NI NS 

The levels of IgG 

specific against 

Hepatitis B were not 
affected in children 

sensitized by P. 

falciparum 

Unexposed 

(n = 179) 

Brown et al., 2014 

[59] Tanzania 

human 

papillomavirus-

16/18 AS04-

adjuvanted 

Women 
(10-25 years old) 

Infection by S. 

haematobium; 

S. mansoni; 

Strongyloides 

stercolaris; 
Ascaris 

lumbricoides; 

Trichuris 
trichiura; 

Taenia spp. 

Study groups 
Antibody titres 

EU/mL 
0.05 

0.59 

High HPV 

immunogenicity 

regardless of the 
presence of malaria 

and helminth 

infections among 
young girls and 

women in Tanzania. 

There was some 
evidence of enhanced 

antibody titres to 

HPV vaccine 
genotypes in 

participants with 

malaria parasitaemia. 

Malaria 

(n = 20) 

HPV16 4335(2890-

6502) HPV18 

1109(764-1609) 

Helminth 

(n = 59) 

HPV16 2843 (2171-

3723) HPV18 1038 
(802-1344) 

0.64 

0.71 

Uninfected 
(n = 129) 

HPV16 2613 (2124-

3215) HPV18 970 

(781-1205) 

 

Schistosomosis 

Malhotra et al., 
2015 [40] Kenya 

Hepatitis B 

Mothers/children 
(> 14 years old/ 6-36 

months old) 

Exposed in 
utero to S. 

haematobium 

Sensitized 
(n = 238) 

NI NS 

Sensitization by S. 
haematobium was not 

associated with 

significantly lower 
Hepatitis B -specific 

IgG. 

Unexposed 
(n = 90) 

Filarioidosis 

Malhotra et al., 
2015 [40] Kenya 

Hepatitis B 

Mothers/children 
(> 14 years old/ 6-36 

months old) 

Exposed in 

utero to 

B. malayi or 
W. bancrofti 

Sensitized 
(n = 167) 

NI NS 

Sensitization by 
filarioidosis was not 

associated with 

significantly lower 
Hepatitis B -specific 

IgG. 

Unexposed 
(n = 110) 

Helminthosiss 

Brückner et al., 

2015 [60] Gabon 

Seasonal 

influenza 

Children 

(6-10 years old) 

Infection by 

A. 
lumbricoides; 

Ancylostoma 

duodenale; 
Fasciola 

hepatica; T. 

trichiura 

Study groups Antibody HI titres 

NS 

There was no 
significant difference 

in the HI titers against 

the influenza vaccine 
between the two 

study groups. 

Antihelminthi

c 

(n = 44) 

AH1N1 320(35-
960) AH3N2 

320(280-640) 

B/Brisbone 320 
(280-640) 

Placebo 

(n = 38) 

AH1N1 320 (20-

480) AH3N2 320 
(240-600) 

B/Brisbone 160 

(80-800) 

Cooper et al., 

2001 [34] Ecuador 

Live oral cholera 

vaccine CVD 

103-HgR 

Subjects 

(12-32 years old) 

A. 

lumbricoides 

Study groups 
Cytokines levels 

pg/mL 

IL2 

0.03 

INFγ 

NS 

A. lumbricoides-

infected subjects who 

received placebo 

treatment before 

vaccination 

demonstrated a 
depressed IL-2 

response. 

Anthelminthic 

(n = 15) 

IL2: 21,8 (0-74) 

INFγ: 7,7 (0-209,7) 

Placebo 

(n = 13) 

IL2: 0 (0-252,9) 

INFγ: 7,9 (0-298,2) 

CI: Confidence interval; NI: No information; NS: The probability value is not reported but is said to be non-significant; IU/mL: International Units per milliliter; 

pg/mL: picograms per milliliter; mm: millimeter; Log2: logarithm base 2; µg/mL: micrograms per milliliter; GMT: geometric mean titres; EU/mL: equivalent 
units per milliliter; HI: hemagglutinin-inhibition; p values were considered significant considering a 95% confidence interval. 
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Table 2. Effect of chemoprophylaxis for malaria on the immune response to vaccines. 

Reference 
Population 
age range 

Exposition 

factor 
Average (CI) p Authors’ conclusion 

Tetanus toxoid 

McGregor et 

al.,1962 [61] 

Gambia 

Subjects 

(5-70 years 

old) 

Chloroquine 

(CQ) 
Pyrimethamine 

(PT) 

Study groups Antibody levels 

NS 

There were significantly more 

patients who did not respond to the 
vaccine in the group without 

chemoprophylaxis. However, no 

differences were observed in 
antibody levels between the 

groups. 

CQ (n = 16) 

PT (n = 14) 
0.19 IU/mL 

No-chemoproph. 

(n = 36) 
0.18 IU/mL 

Greenwood et al., 

1981 [62] Nigeria 

Children 

(3-17 months 
old) 

Chloroquine 

Study groups Antibody levels 

NS 

No difference in antibody levels 
against the tetanus toxoid vaccine 

was observed in the groups with or 
without CQ administration. 

CQ (n = 93) 5.7 log2 (3.1- 8.6 log2) 

no-CQ (n = 91) 5.9 log2 (5.5- 6.3 log2) 

Monjour et al., 

1982 [63] Burkina 

Faso 

Children 

(11 months-3 

years old) 

Amodiaquine 

(AQ) 

Study groups Antibody levels 

> 0.05 

There were no differences in the 

levels of protection between the 

groups. 

AQ (n = 159) 
NI 

no-AQ (n = 126) 

Gilles et al., 1983 
[64] Nigeria 

Children 
(1-5 years old) 

CQ 

Asymtomatic 

malaria 

Study groups Antibody levels 

NS 

Malaria chemoprophylaxis was not 

necessary in the first year of life to 
achieve protection of infants 

against tetanus. 

CQ (n = 123) 1.31 IU/mL (1.06-1.56) 

no-CQ (n = 119) 1.25 IU/mL (0.94-1.56) 

Brabin et al., 1984 

[65] Kenya 

Pregnant 

women 
CQ 

CQ: (n = 107) 

NI NS 

No difference was found in IgG 
titers against tetanus toxoid 

vaccine. All women responded 

appropriately to the vaccine. 
no-CQ (n = 73) 

Schellenberg et al., 
2001 [66] Tanzania 

Children 
(2 months old) 

Sulfadoxine– 

Pyrimethamine 

(SP) 

SP (n =  351) 
NI NS 

No differences in the rate of 
seroconversion for tetanus. No-SP (n = 351) 

Massaga et al., 
2003 [67] Tanzania 

Children 
(12-16 weeks) 

AQ 

Study group Antibody levels 

0.28 

The administration of AQ together 

with the vaccination against tetanus 
toxoid did not change the antibody 

levels generated by the vaccination. 

AQ (n = 77) 12.7 IU/mL (7.6-18.7) 

Placebo  (63) 10.4 IU/mL (6.1-13.7) 

Rosen et al., 2005 

[68] Burkina Faso 

Children 

(4 months-6 

years old) 

AQ 

Study group Seroconversion 

0.08 

Chemoprophylaxis of malaria 
before vaccination in endemic 

areas of malaria does not improve 

or deteriorate the immunogenicity 
of tetanus toxoid vaccine. 

AQ (n = 134) 104/134 (77%) 

no-AQ (n = 138) 126/138 (91%) 

Measles 

Reference 
Population 

age range 

Exposition 

factor 
Average (CI) p Author’s conclusion 

Greenwood et al., 
1981 [62] Nigeria 

Children 

(3-17 month 

old) 

CQ 

Study group Antibody levels 

NS 

No difference in antibody levels 

against measles was observed in 
the groups with or without CQ 

administration. 

CQ (n = 93) 3.5 log2 (3.1-3.9 log2) 

no-CQ (n = 91) 2.9 log2 (2.6-3.2 log2) 

Gilles et al., 1983 

[64] Nigeria 

Children 

(1-5 years old) 

CQ 

Asymptomatic 
malaria 

Study group Antibody levels 

NS 

Malaria chemoprophylaxis is not 
necessary in the first year of life to 

achieve the infant protection 

against measles. 

CQ (n = 121) 5.15 IU/mL (2.34-7.96) 

no-CP (n = 116) 5.57 IU/mL (3.21-7.93) 

Cénac et al., 1988 
[69] Niger 

Children 

(9- 48 months 
old) 

CQ 

Study group Seroconversion 

NS 

The seroconversion was not 

significantly different between the 
groups. 

CQ (n = 289) 218/289 (76%) 

no-CQ (n = 291) 238/291 (82&) 

Rosen et al., 2005 

[68] Burkina Faso 

Children 

(4 months-6 

years old) 

AQ 

Study group Seroconversion 

0.16 

Chemoprophylaxis of malaria 

before vaccination in endemic 

areas of malaria does not improve 

or deteriorate the immunogenicity 

of measles vaccine. 

AQ (n = 137) 127/137 (93%) 

no-AQ (n = 187) 180/187 (96%) 
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In addition, for antigens such as the Bacillus 

Calmette-Guérin (BCG) vaccine and Mycobacterium 

tuberculosis, the cellular immune response is 

important; CD4+ T cells exert their effect by producing 

gamma interferon (IFN-γ), primarily, after stimulation 

with mycobacterial antigens [27]. Parasitic infections 

can limit the amplification of the IFN-γ response 

necessary for the immune response against this 

pathogen. 

On the other hand, it is important to emphasize that 

polyparasitism affects a large number of people 

residing in tropical and subtropical regions. 

Simultaneous parasitic infections enhance and promote 

the persistence of the regulatory immune profile in 

infected subjects, which exacerbates the problem. All 

this has been revealed by studies that associate the 

modulation caused by parasites with the increased 

virulence of lethal pathogens such as the human 

immunodeficiency virus (HIV) [28,29] and 

Mycobacterium tuberculosis [30-31]. 

The Expanded Immunization Program (EIP) aims 

to control, eliminate, and eradicate several 

immunopreventable diseases. The EIP is the result of 

joint actions by nations to achieve the technical capacity 

and political support necessary to improve universality 

in vaccination coverage [32]. Since the implementation 

of this program, a reduction in morbidity and mortality 

of those diseases has been clearly observed. In addition 

to high vaccine coverage as a primary objective, the 

effectiveness of vaccines must also be ensured. This 

effectiveness is understood as the conservation of the 

quantity and quality of the immune response obtained 

in a parasitized population compared to a non-

parasitized population (control).  

The objective of this review was to compile, 

summarize and analyze information about 

immunomodulation by parasitic infections and its 

effects on the immune response to vaccines. We also 

identified the parasites most associated with 

immunomodulation of vaccine responses and those 

vaccines most affected. 
 

Methodology 
A search was carried out in the PubMed, Scopus, 

and Web of science (WOS) databases. Several search 

strategies were employed using combinations of MeSH 

[Majr] terms such as “tetanus toxoid”, “BCG vaccine”, 

“Bacterial vaccines”, “Malaria”, “Helminths”, among 

others; and not MeSH terms such as “parasitic 

infections”, “vaccination efficacy”, “impairment 

vaccination efficacy” and “parasites”. The central 

subject of the search was the influence of parasitic 

infections on the human immune response to bacterial 

and viral vaccines; however, studies that evaluated the 

effect of chemoprophylaxis for malaria on the response 

to bacterial and viral vaccines were also included. First, 

the papers were selected based on the title, and then 

based on the abstract. The inclusion criteria were: 1) 

Original studies or systematic reviews about the effect 

of parasitic infections or chemoprophylaxis for malaria 

on the immune response to vaccines. 2) Studies carried 

out in humans. There were no date or language 

Table 2. Effect of chemoprophylaxis for malaria on the immune response to vaccines. 

Reference 
Population 
age range 

Exposition 

factor 
Average (CI) p Authors’ conclusion 

Others 

Gilles et al., 1983 

[64] Nigeria 

Polio 1,2 and 3 

Children 

(1-5 years old) 
 

CQ 

Asymptomatic 
malaria 

Study group Antibody levels GMT 

NS 

Malaria chemoprophylaxis is not 

necessary in the first year of life to 
achieve the infant protection 

against poliovirus vaccine. 

CQ (n = 29) 

Polio 1: 379 (± 609) 

Polio 2: 134 (± 217) 

Polio 3: 210 (± 363) 

no-CP (n = 19) 

Polio 1: 1344 (± 2320) 

Polio 2: 145 (± 193) 

Polio 3: 190 (± 311) 

Faucher et al., 2002 

[70] Gabon 

Live Oral 

Typhoid and 

Cholera vaccines 

School 
children 

(4-16 years 

old) 

Atovaquone/ 

Proguanil (AP) 

Study group Antibody levels GMT IgG 

S. typhi 

0.958 
IgA S. 

typhi: 

0.072 IgG 
cholera 

0.637 

The two treatment groups did not 
differ significantly with respect to 

changes in antibody titers after 

vaccination. 

AP (n = 165) 

IgG S. typhi:2.99(± 1.21) 

IgA S. typhi:0.97(± 1.13) 
IgG cholera :5.4 (± 1.0) 

Placebo (n = 165) 

IgG S. typhi:2.99(± 1.27) 

IgA S. typhi:0.88(± 1.12) 

IgG cholera :5.3 (± 1.0) 

Rosen et al., 2005 

[68] Burkina Faso 

Diphtheria toxoid 

Children 

(4 months-6 

years old) 

AQ 

Study group Seroconversion 

0.26 

Chemoprophylaxis of malaria 
before vaccination in endemic 

areas of malaria did not improve or 

deteriorate the immunogenicity of 
diphtheria toxoid vaccine. 

AQ (n = 147) 108/147 (73%) 

no-AQ (n = 135) 116/135 (86%) 

CI: Confidence interval; NI: no information; NS: The probability value is not reported but is said to be non-significant; CQ: Chloroquine; AQ: Amodiaquine; 

PT: Pyrimethamine; SP: Sulfadoxine/pyrimethamine; AP: Atovaquone/proguanil; IU/mL: International Units per milliliter; GMT: geometric mean titres; p 

values were considered significant considering a 95% confidence interval. 
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restrictions. The search deadline was July 10, 2018. A 

total of 19 papers that evaluated the effect of parasitic 

infections on the immune response against different 

vaccines, and 10 papers that evaluated the effect of 

chemoprophylaxis for malaria on the response to 

vaccines were included. 
 

Results 
Effect of parasitic infections on the immune response to 

vaccination 

The relevant parasitic infections were: filarioidosis, 

schistosomosis, malaria and geohelminthosis. In these 

studies, the vaccines evaluated were tetanus toxoid, 

diphtheria toxoid, BCG, bacterial polysaccharides 

vaccines, hepatitis B, pertusis toxin, human 

papillomavirus, seasonal influenza and live oral cholera 

(Table 1). Chemoprophylaxis for malaria with 

chloroquine, amodiaquina, sulfadoxine/pyrimethamine 

and atovaquone/proguanil were evaluated; in these 

studies, the vaccines evaluated were tetanus toxoid, 

measles, poliovirus, live oral cholera and diphtheria 

toxoid (Table 2). 
 

Discussion 
The influence of parasitic infections on the efficacy 

of bacterial and viral vaccines has been scarcely studied 

and there are conflicting results. Most of the studies 

found in this review, with the exception of Cooper's 

work in 1999 and 2001 [33,34], were carried out in 

Africa and some countries in Asia.  

This review shows that the immune response 

generated by bacterial polysaccharide vaccines and the 

BCG vaccine is affected by the presence of malaria, 

filarioidosis and schistosomosis. On the other hand, the 

effect of parasitic infections on the response to tetanus 

toxoid vaccine shows discordant results. Only two over 

six studies that evaluated the effect of malaria on the 

immune response against tetanus toxoid showed a 

decrease in IgG levels against the vaccine [35,36] 

(Table 1). However, it is important to note that each 

study includes different groups and different clinical 

presentation of malaria. In a recent study carried out in 

pregnant women, submicroscopic infection by 

Plasmodium was associated with a decrease in the 

levels of IgG against tetanus toxoid [37]. In the same 

way, of four studies that evaluated the effect of 

filarioidosis in the immune response against tetanus 

toxoid, two showed a decrease in IgG levels against 

tetanus toxoid vaccine [38,39], while two did not show 

differences between the groups [33,40] (Table 1). In 

general, those studies that reported changes in antibody 

levels after tetanus toxoid vaccination in the presence 

of parasitic infections had smaller sample sizes 

compared with the studies without differences between 

the groups, which included more than 100 subjects. In 

addition, the levels of antibodies generated by the 

diphtheria toxoid vaccine were not affected by the 

presence of parasitic infection. 

It seems clear that vaccines such as tetanus toxoid 

and diphtheria toxoid, despite parasitic infections, 

continue to fulfill their protective function, as can be 

deduced from the drastic decline in morbidity observed 

after their use. However, a vaccine such as BCG is only 

partially effective because it provides some protection 

against severe forms of pediatric tuberculosis but is not 

completely protective against pulmonary disease in 

infants and is unreliable against adult pulmonary 

tuberculosis. In spite of nearly a century of use, BCG 

remains controversial, with known variations in vaccine 

efficacy across the world [41]. Nonetheless, it should be 

emphasized that parasitic infections can lead to lower 

antibody and INFγ levels, which represent a decrease in 

the quality of the humoral and cellular acquired immune 

responses. Moreover, this review shows that in all 

cases, the parasitic infections affected the immune 

response generated by bacterial polysaccharide 

vaccines. In general, the nature of polysaccharide 

antigens poses a challenge to the generation of long-

term immunological memory [42]. Encapsulated 

bacteria are the main causes of bacteremia, pneumonia, 

and meningitis in childhood globally [43]. For this 

reason, the burden of parasitic infections in vaccinees 

should be considered with respect to the quality of the 

immune response generated by polysaccharide 

vaccines. 

Parasitic infections can be chronic, and the 

persistence of the antigenic stimulus changes the 

expression of immune mediators and promotes constant 

immune regulation, including increases in regulatory T 

cell populations [44]. These alterations of the immune 

system could compromise the response to routine 

vaccination. Chronic infections are associated with 

exhausted T cells with less robust effector functions and 

with alterations in the differentiation of memory T cells 

[45]. The exhausted T cells manifest characteristic 

features including sustained up-regulation and co-

expression of multiple inhibitory receptors and failure 

to produce antigen-independent memory T cells [46]. 

For this reason, the parasitic infections may induce 

impaired efficacy in the immunological processes in 

general, and until now, studies evaluating the immune 

response to vaccination are insufficient and with 

heterogeneous results.  
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Malaria and geohelminthosis are the parasitic 

infections most widely distributed in the world. It is 

important to explore if the general modulation of the 

immune system caused by these parasitic infections 

affects the immune response against different 

pathogens [29,47,48]. Parasitic co-infections can occur 

frequently, and more studies are needed to explore the 

effect of multiple parasitic infections on vaccine 

response and in the immune response against different 

pathogens. 

In conclusion, individuals living in the tropical and 

subtropical areas of the world are most susceptible to 

alterations in the immune response, not only because of 

the large number of parasites they face on a daily basis, 

but also because these host-parasite interactions affect: 

1) the generation of tolerance to parasitic infections; 2) 

the response efficacy against pathogens such as bacteria 

and viruses; 3) the ability to acquire protective 

immunity against vaccines and against pathogens. This 

situation would pose a serious challenge for the EIP and 

for other vaccines not included in the program. The 

available data, reviewed here, are insufficient but 

suggest that alteration of acquired protective immunity 

from vaccines does occur. From the point of view of 

public health, it is necessary to evaluate this subject in 

terms of the level of parasite prevalence in different 

populations and according to polyparasitism. This 

highlights the need for increasing studies on this 

subject, especially in the American continent, where 

millions of people are affected by multiple parasitic 

infections. 
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