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Abstract 
Introduction: The spread of carbapenem-resistant Acinetobacter baumannii (CRAB) is difficult to control especially in the hospitals due to the 

successful mobilization and evolution of the genetic elements harboring the resistant determinants. The study was conducted to examine the 

distribution of aminoglycosides, tetracycline, and sulfonamide-resistant determinants among CRAB isolates that carry the blaOXA-23 gene. 

Methodology: For a total of 160 CRAB strains isolated at tertiary care hospitals of Pakistan that mainly carried blaOXA-23 gene were included 

in the study to evaluate the assortment of antibiotic resistance genes. 

Results: The susceptibility rates of CRAB for other than beta-lactam drugs were 2.5% for both ciprofloxacin and aminoglycosides and 18% 

and 25% for sulfonamides and tetracyclines, respectively. Polymyxin B (MIC90, 1 g/mL) Colistin (MIC90, 1 g/mL) and Tigecycline (MIC90, 2 

g/mL) were most active against these extensively drug-resistant CRAB isolates. The isolates were found to possess various genes mainly the 

tetB and sul2 for tetracycline and sulfonamide but the genes conferring resistance to aminoglycosides were varied with various combinations. 

Conclusion: Despite the CRAB clones containing blaOXA-23 have been previously reported in Pakistani hospitals, the screening of genetic 

determinants responsible for other antimicrobial agents is crucial for developing an effective surveillance and mitigation system for infection 

management. 
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Introduction 
Acinetobacter baumannii; an important nosocomial 

pathogen is rapidly developing towards pan-drug 

resistance. The frequency of infections among patients 

in various healthcare settings is also increasing mainly 

in intensive care units (ICUs) [1- 3]. This pathogen is 

generally responsible for severe hospital-acquired 

infections which usually involve the use of 

carbapenems as a drug of choice for the therapeutic 

management of such infections. The resistance to 

carbapenems, however, is increasingly being reported 

in A. baumannii isolated from the clinical settings that 

necessitate some novel drugs or the use of alternative 

therapeutic choices [4-6]. The carbapenem-resistant A. 

baumannii are increasingly reported from hospitalized 

patients during the past few years that are associated 

with high rates of mortality. The class D β-lactamases 

are able to confer carbapenem resistance and are the 

most abundant mechanism among A. baumannii 

isolates [7,8]. The data regarding the occurrence of 

carbapenem resistance among A. baumannii in Pakistan 

is still deficient, the fewer reports have indicated the 

prevalence of OXA types β-lactamases especially 

blaOXA-23 among carbapenem-resistant isolates from 

various tertiary care hospitals [3,9]. 

The higher rate of resistance to all clinically useful 

aminoglycosides have been reported among 

Acinetobacter species as compared to other pathogenic 

bacteria [10,11]. The aminoglycoside resistance among 

A. baumannii involves the production of various types 

of aminoglycosides modifying enzymes (AMEs), 

including acetyltransferases, nucleotidyltransferases, 

and phosphotransferases that vary in their antibiotic 

substrates and no single AME is able to modify all types 

of aminoglycosides [12]. The ribosomal methylation is 

another mechanism described during the past few years 
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through the production of 16S rRNA 

methyltransferases that reduce the affinity of almost all 

aminoglycosides [13,14] 

The resistance to the tetracyclines is mainly 

ascribed to the acquisition of efflux pumps belonging to 

major facilitator superfamily (MFS) i.e. tetA and tetB 

and the resistance nodulation division family (RND) 

such as adeABC, adeIJK, adeFGH, adeM, adeDE in A. 

baumannii isolates. These RND efflux systems in 

association with the tetA and tetB genes result in the 

higher MIC of tetracyclines [15,16]. The sulfonamide 

resistance is mediated by the acquisition of 

dihydropteroate synthase (DHPS) such as sul1, sul2, 

and sul3 among Gram-negative pathogens. These genes 

are usually found on insertion elements, integrons, and 

conjugative plasmids that facilitate their transfer 

[17,18].  

A. baumannii isolates from five tertiary care 

hospitals of Pakistan collected between (2016-2017), 

resistant to carbapenems and 3rd generation 

cephalosporins were shown to fall into seven groups 

based on REP-PCR typing. These isolates were found 

to harbor ISAba1 elements upstream to blaOXA51 and 

blaOXA-23 genes [3]. We have increased the collection 

by scrutinizing more recent A. baumannii isolates from 

a tertiary care hospital of Lahore, Pakistan. Here, we 

have identified the mechanism of aminoglycosides, 

tetracyclines and sulfonamide resistance among 

carbapenem-resistant A. baumannii clinical isolate for 

the very first time in Pakistan.  

 

Methodology 
Bacterial Isolates and identifications 

The present study comprised 134 CRAB recovered 

from five different tertiary care hospitals during 2016 

(April) to 2017 (March) as described previously and 26 

additional carbapenem-resistant isolate. These 26 

isolates were recovered during May-June 2017 from a 

tertiary care hospital that were added to those reported 

in our recent study [3]. These 26 isolates were 

recovered from the patients admitted to the ICUs. 

The inclusion criteria included the isolates obtained 

from the patients with an active infection including 

surgical site infection, wound infection or burn, 

bacteremia, pneumonia, meningitis, and urinary tract 

infection. Exclusion criteria included the A. baumannii 

isolate from the same patient. Isolates were then 

identified by amplification of the recA gene and a 

fragment of the ITS region as well as the amplification 

of the OXA-51-like gene which is an intrinsic beta-

lactamase in A. baumannii using specific primers as 

described previously. The study got prior approval from 

the institutional review board of the Government 

College University Faisalabad, Pakistan. 

 

Antimicrobial Susceptibility Testing 

The MICs of 9 antibiotics was reported previously 

for the 134 isolates [3]. All the isolates were again 

tested for susceptibility using the disc diffusion method 

and the MIC of the isolates was determined additionally 

for tazobactam-piperacillin, ciprofloxacin, amikacin, 

doxycycline, and trimethoprim-sulfamethoxazole using 

the broth microdilution method and interpreted 

consistently with the breakpoints defined by CLSI 

guidelines [19]. Isolates showing intermediate levels of 

susceptibility were classified as nonsusceptible. The 

Escherichia coli ATCC strain no. 25922 and P. 

aeruginosa ATCC strain no. 27853 were used as a 

control for the susceptibility testing and determination 

of MICs. 

 

Screening of resistant determents 

For the amplification of antibiotic resistance 

determinists, the PCR experiments were performed 

using specific pair of primers for tetA, tetB, sul1, sul2, 

armA, rmtA, rmtB, amtC, rmtD, rmtE, rmtF, aphA1, 

aphA6, aacC1, aadA1, aadB as described previously 

(Table 1). The amplicons were separated by 

electrophoresis on 1-1.2 % (w/v) agarose gels 

depending on the amplicon size, stained with the dye 

(ethidium bromide, 3 mg/L), visualized under 

ultraviolet (UV) light using gel documentation system. 

The product sizes were assessed using GeneRuler 100-

bp plus DNA ladders (Thermo Fisher Scientific, 

Waltham, Massachusetts, USA) as size markers. 

 

DNA sequencing and sequence analysis 

The PCR products were randomly selected and 

purified using the PCR product purification kit 

(Favorgen Biotech Corp., Pingtung County, Taiwan) 

and sequenced for further confirmation. The sequences 

were compared against the GenBank database using the 

BLAST tool. 

 

Results 
Of the 160 A. baumannii isolates included in this 

study, (n = 57, 35.6%) were recovered from the tracheal 

secretions followed by blood (n = 32; 20%) and sputum 

(n = 28; 17.5%). Overall, 64% of the infected patients 

were male and 36% were female.  
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Table 1. Primers used for the screening of tetracycline, sulfonamide, and aminoglycoside resistant determinants. 

Genes Primers Sequence (5’ to 3’) 
Aimed product 

(bp) 

Annealing 

temperature 
References 

tetA 
tetA-F GTGAAACCCAACATACCCC 

888 50 [39] 
tetA-F GAAGGCAAGCAGGATGTAG 

tetB 
tetB-F CCTTATCATGCCAGTCTTGC 

774 50 [39] 
tetB-R ACTGCCGTTTTTTCGCC 

sul1 
sul1-F CGGCGTGGGCTACCTGAACG 

433 58 [40] 
sul1-R GCCGATCGCGTGAAGTTCCG 

sul2 
sul2-F GCGCTCAAGGCAGATGGCATT 

293 58 [40] 
sul2-R GCGTTTGATACCGGCACCCGT 

armA 
armA-F ATTCTGCCTATCCTAATTGG 

315 56 [41] 
armA-R ACCTATACTTTATCGTCGTC 

rmtA 
rmtA-F CTAGCGTCCATCCTTTCCTC 

635 56 [42] 
rmtA-R TTTGCTTCCATGCCCTTGCC 

rmtB 
rmtB-F ATGAACATCAACGATGCCCT 

769 56 [43] 
rmtB-R CCTTCTGATTGGCTTATCCA 

rmtC 
rmtC-F CGAAGAAGTAACAGCCAAAG 

711 56 [41] 
rmtC-F ATCCCAACATCTCTCCCACT 

rmtD 
rmtD-F CGGCACGCGATTGGGAAGC 

401 51 [43] 
rmtD-R CGGAAACGATGCGACGAT 

rmtE 
rmtE-F ATGAATATTGATGAAATGGTTGC 

818 46 [43] 
rmtE-R TGATTGATTTCCTCCGTTTTTG 

rmtF 
rmtF-F GCGATACAGAAAACCGAAGG 

589 50 [43] 
rmtF-R ACCAGTCGGCATAGTGCTTT 

aacC1 
aacC1-F ATGGGCATCATTCGCACATGTAGG 

456 60 [26] 
aacC1-R TTAGGTGGCGGTACTTGGGTC 

aadA1 
aadA1-F ATGAGGGAAGCGGTGATCG 

254 54 [26] 
aadA1-R TTATTTGCCGACTACCTTGGTG 

aadB 
aadB-F ATGGACACAACGCAGGTCGC 

524 54 [26] 
aadB-R TTAGGCCGCATATCGCGACC 

aphA1 
aphA1-F CAACGGGAAACGTCTTGCTC 

455 50 [44] 
aphA1-R ATTCGTGATTGCGCCTGAG 

aphA6 
aphA6-F ATGGAATTGCCCAATATTATTC 

797 50 [26] 
aphA6-R TCAATTCAATTCATCAAGTTTTA 

 

 

 

 

 

Table 2. Comparative in-vitro activity of antimicrobial agents against 160 carbapenem resistant A. baumannii. 

Antimicrobial agents 
MIC µg/mL Fully susceptible isolates 

(%) Breakpoints 50% 90% 

Imipenem ≥ 8 64 128 0 

Cefotaxime ≥ 64 > 128 > 128 0 

Ceftriaxone ≥ 64 > 128 > 128 0 

Ceftazidime ≥ 32 > 128 > 128 0 

Cefepime ≥ 32 > 128 > 128 0 

Piperacillin-Tazobactam ≥ 128/4 > 128/4 > 128/4 1.9 

Ampicillin-Sulbactam ≥ 32/16 64/32 > 128/64 0 

Ciprofloxacin ≥ 4 64 64 2.5 

Amikacin ≥ 64 128 128 2.5 

Doxycycline ≥ 16 16 32 25 

Trimethoprim-sulfamethoxazole ≥ 4/76 4/76 64/1216 18 

Polymixin B ≥ 4 0.5 1 100 

Colistin ≥ 4 0.5 1 100 

Tigecycline* ≥ 8 1 2 100 

*Interpreted according to the Food and Drug Administration (FDA), USA guideline; Susceptible (MIC ≤ 2 μg/mL), Resistant (MIC ≥ 8 μg/mL) 
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The rate of susceptibility among carbapenem resistance 

isolates to ciprofloxacin and amikacin were 2.5% while 

doxycycline and trimethoprim-sulfamethoxazole were 

25% and 18% respectively. All these carbapenem-

resistant isolates were completely resistant to 

cephalosporins and ampicillin-tazobactam. It was 

alarming to know that many of the isolates were 

susceptible to polymyxins and tigecycline only as 

shown in Table 2. 

All the isolates were assessed to find the resistance 

determinants, including efflux pumps (tetA and tetB) 

sulfonamide resistance genes such as sul1 and sul2, 

aminoglycosides modifying enzymes and 16s 

methylases. The overall prevalence of aphA1, aphA6, 

aacC1 and aadB genes was 10%, 91.3%, 8.1% and 75% 

respectively. Among the 156 amikacin resistant 

isolates, aphA6 and aadB were mainly detected from 

the majority (146 and 120 respectively) of isolates as 

shown in Table 3. The 113/120 (94.2%) of tetracycline 

isolates were positive tetB whereas the 9 (7.5%) isolates 

were positive for both tetA and tetB genes and tetA 

alone was not found as shown in Table 4. The 

distribution of MIC for amikacin have shown that 

MIC50 and MIC90 for amikacin was 128 µg/mL 

(Breakpoints; ≥ 64 µg/mL). The MIC50 and MIC90 for 

doxycycline were 16 µg/mL and 32 µg/mL 

respectively. The tetracycline-resistant isolates ranged 

between 16 – 64 µg/mL (Breakpoints; ≥ 16 µg/mL) 

(Table 4). The MIC50 and MIC90 for trimethoprim-

sulfamethoxazole were 4/76 µg/mL and 64/1216 

µg/mL respectively (Breakpoints; ≥ 4/76 µg/mL).  

The tetracycline susceptible isolates were not found 

to harbor any of the tetA or tetB gene. In 131 

trimethoprim-sulfamethoxazole resistant, A. baumannii 

isolates, sul1 and sul2 were detected in 129/131 isolates 

and 14 (10.7%) isolates were found positive for sul1 

and 95 (72.5%) for sul2 gene whereas 21 (16%) isolates 

harbored both sul1 and sul2 as shown in Table 5.  

 

Discussion 
The CRAB isolates have been first reported in 

Pakistan from Karachi in 2011, and then from 

Rawalpindi and Lahore. These isolates mainly carried 

the blaOXA-23 gene and mostly harbored an insertion 

sequence ISAba1 although NDM-1 was also reported 

from few isolates [3,9,20]. The control of infections 

caused by CRAB has impelled the extensive use of 

antimicrobial agents such as colistin and tigecycline 

especially when no other antimicrobial agents are 

effective as seen in severe infections [21]. The suitable 

Table 3. Frequency of AMEs among amikacin resistant isolates. 

MIC distribution of amikacin Isolates n (%) 
Aminoglycoside-modifying enzymes 

aphA1 aphA6 aacC1 aadA1 aadB 

64 12 (7.7%) - 3 6 - 1 

128 144 (92.3%) 16 143 7 - 119 

Overall 156 (97.5%) 16 146 13 - 120 

 

Table 4. Distribution of MIC of doxycycline and resistance determinants among 120 doxycycline resistant isolates. 

Resistance determinants 
 No. of resistant isolates for which MIC was 

 0.06 0.125 0.25 0.5 1 2 4 8 16 32 64 ≥ 128 

tetA and tetB negative 7 (5.8%) - - - - - - - - 5 2 - - 

tetA positive onlya 0 - - - - - - - - - - - - 

tetB positive only 113 (94.2%) - - - - - - - - 91 14 8 - 

Both tetA and tetB positive 9 (7.5%) - - - - - - - - - 1 8 - 
aNone of the isolates were found to have tetA gene alone. 

 

 

Table 5. The corresponding MIC of trimethoprim-sulfamethoxazole with the presence of sul1 and sul2 genes.  

Susceptibility of trimethoprim-

sulfamethoxazole 
MIC (µg/mL) No. of isolates sul1 alone sul2 alone sul1 + sul2 

Susceptible 0.06/1.14 – 2/38 29 (18%) 0 0 0 

Resistant 

4/76 97 5 90 - 

8/152 7 3 4 - 

16/304 2 2 - - 

32/608 3 - 1 3 

64/1216 22 4 - 18 

128/2432 - - - - 

Total  131 (82%) 14 (10.7%) 95 (72.5%) 21 (16%) 

MIC; Minimum Inhibitory Concentration. 
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treatment and appropriate infection control procedures, 

however, involve the availability of local drug 

susceptibility patterns and the data regarding the 

molecular epidemiology and precise antibiotic 

resistance determinants. Although the few studies have 

reported the emergence and spread of CRAB in 

Pakistan, data regarding the susceptibility and 

resistance determinants related to other antimicrobial 

agents are not available. 

The occurrence of 16s methylases and AME genes 

were investigated among amikacin resistant A. 

baumannii isolates. This is the first report regarding the 

distribution of aminoglycoside-resistant determinants 

in Pakistan. It is important to note that 97% of isolates 

were found non-susceptible to amikacin with an MIC50 

and MIC 90 of 128 µg/mL (Table 2). The studies have 

reported that amikacin possesses good activity against 

A. baumannii strains [22]. Another important finding 

that the isolates were negative for 16s methylases 

despite the fact that armA is quite frequently reported 

in A. baumannii isolates [23,24]. This might be because 

the presence of armA is associated with high-level 

resistance to most clinically important 

aminoglycosides. We found that our isolates have an 

amikacin MIC ≤ 128 µg/mL. A study from Iran has 

reported that armA methylases were found in only 

30.7% isolates having MIC ≥ 256 µg/mL [25].  

Among the AMEs, the aph(3′)-VIa (aphA6) alone 

or in combination with other AME genes including 

aph(3′)-Ia (aphA1) and aac(3′)-Ia (aacC1) was found. 

The aph(3′)-VIa was positive in 94% of amikacin 

resistant isolates. These AME genes are also common 

in A. baumannii strains although the notable differences 

were observed in the distribution patterns among 

various studies [26]. Our results are somehow similar to 

a study from Iran that reported the prevalence of 

aph(3′)-VIa and aph(3′)-Ia (aphA1) in 60.46% and 

27.9% of isolates respectively [27]. The aph(3′)-VIa 

was initially detected in clinical strains of A. baumannii 

and afterward in other pathogens. The whole-genome 

analysis has revealed that aph(3′)-VIa is usually flanked 

by ISs and mostly carried by the conjugative plasmids 

and is responsible for conferring resistance to amikacin 

that is considered as the most active aminoglycoside to 

treat the infections caused by Acinetobacter species in 

hospital settings [28]. Additionally, aph(3′)-VIa also 

confer resistance to other aminoglycosides including 

neomycin, kanamycin, gentamicin, paromomycin, and 

ribostamycin [29].  

The efflux pumps genes; tetA and tetB are the most 

common determinants that confer resistance to 

tetracyclines in A. baumannii isolates. In our study, the 

120 strains were resistant to tetracyclines and out of 

these, tetA was found in 7 and tetB detected from 113 

strains. The 9 (7.5%) strains were found positive for 

both tetA and tetB gene with a high MIC as shown in 

Table 4. Efflux pumps confer resistance to a wide range 

of antimicrobials and are prevalent among Gram-

negative bacteria especially in non-fermenters [30]. The 

tetA is able to confer resistance mainly to tetracycline 

and doxycycline whereas tetB can extrude minocycline 

in addition to the tetracycline and doxycycline, 

therefore, reported more among the isolates that are 

resistant to minocycline also [15,31]. The results are 

similar to the majority of published studies. A study 

from Iran has reported the prevalence of tetA as 2% and 

tetB as 87% [32]. A study from China has reported the 

occurrence of tetA and tetB as 26.5% and 65.3% 

respectively [33]. A recent study from Iran has reported 

that tetA was not found and all 35 tetracycline-resistant 

A. baumannii isolates were found to possess the tetB 

gene [34]. Most of the trimethoprim-sulfamethoxazole 

resistant strains in this study i.e. 95 (72.5%) were found 

to harbor the sul2 gene whereas the sul1 gene was 

present in 14 (10.7%) of isolates. The sul1 and sul2 

were absent in the susceptible isolates. A previous study 

from South Korea reported that the sul1 gene was more 

frequent than sul2 in 13 trimethoprim-

sulfamethoxazole resistant A. baumannii isolates [18]. 

The higher MIC of sul1-positive isolates was observed 

as compared to sul2-positive isolates, whereas 21 (16%) 

isolates that harbored both sul1 and sul2 were having 

the highest MIC as shown in Table 3. The previous 

studies have reported that that the sul1 gene is 

associated with higher MICs compared to the sul2 gene 

in pathogenic bacterial species probably due to the 

involvement of specific mechanisms with the sul1 gene 

[35,36]. Furthermore, various studies have reported the 

presence of a sul1 gene with the class 1 integrons still 

some reports do not found class 1 integron in sul1-

positive isolates [37]. The sul1 and sul2 genes were not 

detected in four isolates that were resistant to 

trimethoprim-sulfamethoxazole. The studies have 

reported that the low-level resistance is not usually 

associated with sul genes and can result from different 

other biochemical mechanisms [37,38]. 

 

Conclusion 
The study revealed the presence of multiple 

antibiotic-resistant determinants in multidrug-resistant 

A. baumannii strains for the first time in Pakistan. 

Further studies are required to analyze the sequence 

types and explore the function of mobile genetic 

elements and their role in the dissemination of these 
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resistant genes. Although, more comprehensive 

approaches must be taken to explain the specific 

molecular mechanisms; the present study will 

considerably contribute to understanding the role of 

various acquired antibiotic-resistant determinants in 

multiple drug resistance phenotype of widely dispersed 

A. baumannii strains especially in tertiary care 

hospitals. Moreover, this study emphasizes the 

significance of continuous surveillance programs to 

monitor the emergence and correlation of these 

resistance determinants among the A. baumannii 

clinical strains at a national level as well as around the 

world.  
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