
 

Coronavirus Pandemic 
 
Non-linear link between temperature difference and COVID-19: Excluding the 
effect of population density 
 
Yongmei Ding1 #, Liyuan Gao1 #, Ning-Yi Shao2 
 
1 Department of Mathematics and Statistics, College of Science, Wuhan University of Science and Technology, 
Wuhan, Hubei Province, China 
2 Faculty of Health Sciences, University of Macau, Macau SAR, China 
 
# Authors contributed equally, and should be regarded as co-first authors. 
 
Abstract 
Introduction: The spatiotemporal patterns of Corona Virus Disease 2019 (COVID-19) is detected in the United States, which shows temperature 
difference (TD) with cumulative hysteresis effect significantly changes the daily new confirmed cases after eliminating the interference of 
population density. 
Methodology: The nonlinear feature of updated cases is captured through Generalized Additive Mixed Model (GAMM) with threshold points; 
Exposure-response curve suggests that daily confirmed cases is changed at the different stages of TD according to the threshold points of 
piecewise function, which traces out the rule of updated cases under different meteorological condition. 
Results: Our results show that the confirmed cases decreased by 0.390% (95% CI: -0.478~ -0.302) for increasing each one degree of TD if TD 
is less than 11.5°C; It will increase by 0.302% (95% CI: 0.215 ~ 0.388) for every 1°C increase in the TD (lag0-4) at the interval [11.5, 16]; 
Meanwhile the number of newly confirmed COVID-19 cases will increase by 0.321% (95% CI: 0.142 ~ 0.499) for every 1°C increase in the 
TD (lag0-4) when the TD (lag0-4) is over 16°C, and the most fluctuation occurred on Sunday. The results of the sensitivity analysis confirmed 
our model robust. 
Conclusions: In US, this interval effect of TD reminds us that it is urgent to control the spread and infection of COVID-19 when TD becomes 
greater in autumn and the ongoing winter. 
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Introduction 

The outbreak of Corona Virus Disease 2019 
(COVID-19), which poses a public health threat [1,2], 
has led to more than 93 million subjected infected and 
2.01 million dead worldwide as of 17 January 2021 [3], 
correspondingly up to 23.34 million and 0.39 million 
for the United States (US), respectively. Early studies 
have shown that COVID-19 is transmitted between 
individuals by direct contact or droplets, like coughing, 
sneezing, talking, or even singing [4]. Air pollution and 
population density have also been proved as important 
factors for the transmission and survival of this 
coronavirus [5-9]. Meteorological changes in indoor 
and outdoor environmental factors on human behavior, 
social interactions, or hygiene practices that stimulate 
the propagation among the infected or susceptible [10]. 
However, less is certain about the environmental 
conditions that drive the spatiotemporal patterns of 
COVID-19 in the US as the confirmed cases are 
increased dramatically day by day, especially since 26 

June 2020, the number of daily new cases is over 40 
thousand; even more, up to 200 thousand in 20 
December 2020. Some scientists conjecture that low 
temperature regions enhance the viability of COVID-19 
cases [11-13]. However, other researchers deem daily 
average temperature is correlated positively with the 
number of daily increased COVID-19 cases or weak 
association between them [14,15]. Here we modeled the 
effect of temperature difference on COVID-19 
transmission using a moving average lag period of 7 
days. It also provides the inflection point of all orders 
of a lag period after excluding the impact of population 
density on newly confirmed cases. Nonlinear 
characteristics of daily confirmed cases are absorbed by 
GAMM, which provides the exact measure to 
spatiotemporal meteorological data. The influence of 
meteorological parameters is measured independently 
by the models’ coefficients, and it is significant on the 
Daily New Cases (DNC). The sensitivity analysis is 
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implemented for the effect, and the consistency shows 
our models robust. 

 
Methodology 
Data feature 

Our case study covered 9 main partitions, including 
all 50 states and Washington, D.C in the US, the time 
span is from March 9th, 2020 to January 10, 2021. The 
data set information is extracted from the center of 
Systems Science and Engineering, Johns Hopkins 
University, while meteorological data is from the 
National Aeronautics and Space Administration. Figure 
1 and Figure 2 show the cumulative confirmed cases 
and temperature differences in different states as of 
January 10, 2021. The darker the heat map, the bigger 
the data. Both cumulative confirmed cases of COVID-
19 (Figure 1) and temperature changes (Figure 2) in the 
western and southern United States were significantly 
higher than in other regions. 

The dependent variable is COVID-19 DNC. It is 
known that population density is an influenced factor to 
the increased cases of COVID-19 [16-18], with 
correlation coefficient of 0.265. The density coefficient 

of standardization for population density is derived by 
z-score. Here we eliminate the effect of population 
density through the COVID-19 confirmed cases 
dividing by this coefficient. The meteorological factors 
that might be associated with COVID-19 in the US, is 
shown in Table 1. The abbreviation forms are given as 
shown in the first column. 

 
Variance Inflation Factors (VIF) 

When multiple variables are analyzed, information 
overlap often exists between variables. Collinearity test 
is a suitable way to check the repeated information by 
the statistic of VIF with the expression shown in (1). R2 
is the complex coefficient of regression to other 
independent variables with 𝑋𝑋(𝛽̂𝛽) as the dependent 
variable. Usually, the multiple correlations will 
seriously affect the least-squares estimation if the 
maximum VIF exceeds 10 [19,20]. 

 𝑉𝑉𝑉𝑉𝑉𝑉�𝛽̂𝛽� = 1
(1−𝑅𝑅2 )

   (1) 
 

Generalized additive mixed model (GAMM) 
Linear regression is often used when looking for 

correlations between multiple variables. This is not 
always the case. Based on the VIF test, we found that 
the nonlinear feature is more significant about the 
association with meteorological factors and COVID-19 
cases. GAMM is used to explore the nonlinear 
relationship between weather factors and health 
conditions [21,22]. Since temperature may last for 
several days and the incubation period of COVID-19 
varies from 1 to 14 days, we used GAMM to test the 
moving average hysteresis effect of temperature 
differences (lag0-4). The model is defined as follows: 

Log(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖) = 𝛼𝛼 + 𝛽𝛽0(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖) + 𝛽𝛽1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖) +
𝑠𝑠(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ,𝑘𝑘 = 5) + 𝑠𝑠(𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 ,𝑘𝑘 = 3) + 𝑠𝑠(𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 , 𝑘𝑘 = 4) +
𝑠𝑠(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 ,𝑘𝑘 = 3) + 𝜀𝜀𝑖𝑖𝑖𝑖     (2) 

 
where 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 denotes the number of new confirmed 

cases in the area i on day t (plus 1 to avoid the logarithm 
of 0) [23]; α is the intercept of model, WEEKi and 
STATEi are named as indicative functions to denote the 
effect of week and state for controlling the effects of 

Table 1. Variables and their connotation. 
Variables Connotation 

DNC Daily new cases 
TD Temperature difference 

ADR Average daily rainfall rate 
RH The daily average of relative humidity 

PS The daily average of atmospheric pressure at 
the surface of the earth 

WS The daily average range of wind speed 
 

Figure 2. Temperature difference on January 10, 2021. 

Figure 1. Cumulatively confirmed cases on January 10, 2021. 
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short-term fluctuations in time and random effects in 
different regions.  𝑠𝑠(∙)is a natural spline function for 
smoothing, and the degree of freedom is selected 
according to Akaike information criterion (AIC) to 
avoid overfitting [24]. 

 
Results 
Descriptive analysis 

It shows the correlation coefficients between 
meteorological variables in Figure 3. The heat map 
shows there exists a strong correlation between RH and 
the four factors of TD & ADR & PS & WS, which 
means the latter variables include the most information 
of RH, so we haven’t selected it in our modeling process 
to avoid overfitting in the following section. 

The TD is a significant factor to affect the 
transmission of COVID-19 cases, but we cannot sure 

when is the most significant to this association. 
Different leading time is considered because of the 
incubation period of COVID-19, and the average effect 
of TD lag from 0 to 21 days is considered. The changing 
curve of this association is show in Figure 4. It seems 
smoothly, but the inflection point is emerged at the lag 
order of 4th. 

 
The association with daily updates of COVID-19 and 
TD 

We test the multicollinearity about the variables 
from Figure 3, the value of VIF shows no co-linear 
effect between them, which means that little evidence 
could express linear correlation among factors. Using 
the GAMM model, we found that when the moving 
average of TD lags for 4 days, the nonlinear relationship 
is robust and significant (p < 0.05). 

The space difference feature has aroused our 
attention. Nine representative states are selected 
according to the Census Bureau's Geographical 

Figure 4. Diagram of correlation coefficient between DNC and 
TD (lag0 ~ lag0-21). 

Solid line represents estimated correlation coefficient; dashed line 
represents 95% confidence interval of estimated correlation coefficient. 

Figure 3. Thermal diagram of correlation coefficient between 
meteorological variables. 

Figure 5. The percentage change of newly confirmed COVID-
19 cases (lag0-4) for every 1°C change in TD before considering 
population density. 

"*": p <0.05, the same below. 

Figure 6. For every 1°C change in TD after considering 
population density, the percentage change of newly confirmed 
COVID-19 cases (lag0-4). 
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Partition for detecting this difference. Here we 
demonstrate the difference of TD effect in Figure 5 and 
Figure 6. It also verifies the new confirmed cases have 
been posed significant influence by population density. 

The association of nonlinear feature is evident from 
the exposure-response curve in Figure 7, which shows 
that the trend of newly confirmed COVID-19 cases 
influenced by TD (lag 0-4) is divided into three stages 
(p < 0.05). Specifically, the relationship is 
approximately inversely linear when the temperature 
difference is less than 11.5°C or greater than 16°C, and 
positively linear when greater than 11.5°C and less than 
16°C, which hints that the double thresholds of 

temperature difference for new confirmed COVID-19 
cases are set as 11.5°C and 16°C tentatively. 

The association of COVID-19 cases with the 
combined effect of temperature difference and week 
effects is demonstrated in Figure 8. We try to find out 
the most significant week-time node, and the surface 
shows newly confirmed cases are waved at different 
range of TD and week time. It fluctuates the most 
significance on Sunday with the maximum change of -
0.264% (95%CI: -0.381~ -0.381). The two thresholds 
of 11.5°C and 16°C make the effect of temperature 
difference into three parts. We chose linear model to 
quantify the impact of TD for every part, then a 
piecewise linear regression model is established here.  

Our results show that the number of new confirmed 
COVID-19 cases decreases by 0.390% (95% CI: -
0.478~ -0.302) for every 1°C increase when the TD 
(lag0-4) is lower than 11.5°C; it will increase by 
0.302% (95% CI: 0.215 ~ 0.388) for every 1°C increase 
of TD (lag0-4) at the interval [11.5, 16], meanwhile the 
number of new confirmed cases will increase by 
0.321% (95% CI: 0.142 ~ 0.499) for every 1°C increase 
when the TD (lag0-4) is over 16°C (Figure 9).  

Figure 8. Perspective of new confirmed cases of COVID-19 
affected by two variables of TD (lag0-4) and WEEK. 

Figure 7. The exposure-response curve of the influence of 
temperature difference (lag0-4) on newly confirmed COVID-19 
cases. 

The X-axis is temperature difference, the Y-axis is the contribution of 
smoothen to the fitting value, and the red and blue dotted lines are the 
double thresholds of TD: 11.5°C and 16°C, respectively. 

Figure 9. The role of TD (lag0-4) in the results of piecewise 
linear regression. 

Figure 10. The role of other important meteorological variables 
(PS, ADR, WS) in the results of piecewise linear regression. 
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In the modeling process of piecewise linear 
regression, PS, ADR and WS are considered as the 
mixed effect to the updates on COVID-19 (Figure 10), 
which is highly correlated with TD. The weak effect is 
demonstrated through the coefficients in Figure 10. In 
the three stages of TD variation, the impact from these 
three variables is less than TD as the coefficients are 
almost lower than 0.1 with significances. 

 
Sensitivity analysis 

It is well known that California State is the hardest 
hit at the early time in the US, with a much larger 
cumulative number of confirmed cases than other cities. 
Here we exclude it from the data set for the sensitivity 
test. Our results show that the nonlinear relationship is 
not only robust but also significant when the moving 
average of TD is taken to lag by 4 days (p < 0.05) 
(Figure 11). 

The number of new confirmed COVID-19 cases 
decreases by 0.338% (95%CI: -0.428~ -0.249) for 
every 1°C decreases if TD (lag0-4) is lower than the 
threshold of 11.5°C, while increases by 0.322% 
(95%CI: 0.235~ 0.410) if the TD (lag0-4) is greater than 
11.5°C and less than 16°C, and increases by 0.004% 
(95% CI: -0.192 ~ 0.201) when the TD is higher than 
16°C (Figure 13). The association of COVID-19 cases 
with the combined effect of temperature difference and 
week effects is demonstrated in Figure 12. In addition, 
Figure 14 verifies the conclusion that PS, ADR and WS 
have a weak impact on the COVID-19 update. 

 
Discussion 

We focus on the association of environmental 
temperature differences and newly confirmed cases of 
COVID-19. The nonlinear relationship is measured by 
GAMM, which is significant in the sensitive test. The 
greater the TD, the more updated cases of COVID-19 if 
the temperature difference is greater than 11.5°C and 
less than 16°C. When the temperature difference is 
greater than 16°C, the COVID-19 updates will further 

Figure 12. Perspective of new confirmed cases of COVID-19 
affected by two variables of TD (lag0-4) and WEEK. 

Figure 11. The exposure-response curve of the influence of 
temperature difference (lag0-4) on newly confirmed COVID-19 
cases. 

Figure 14. The role of other important meteorological variables 
(PS, ADR, WS) in the results of piecewise linear regression. 

Figure 13. The role of TD (lag0-4) in the results of piecewise 
linear regression. 
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increase, indicating that a higher TD may not inhibit the 
spread of this novel Coronavirus. But if the TD is lower 
than 11.5°C, it presents a reverse linear relationship that 
the greater the temperature difference, the fewer 
updates of COVID-19. External temperature changes 
that affect the transmission mechanism of COVID-19 
mainly reflect in two aspects: one is the impact of 
temperature on the survival of COVID-19 virus [25-
27], which has been confirmed in early studies on 
SARS virus [28-31]; second, external temperature 
changes cause the migration and mobility of population 
[32-34]. Our study sheds some light on the non-linear 
relationship between ambient temperature and new 
confirmed cases of COVID-19, which verifies that the 
number of new confirmed cases of COVID-19 may 
increase daily without any public health interventions if 
the weather changes dramatically. Therefore, neither 
the public nor the government can ignore the link 
between temperature changes and the virus and take 
preventive measures. 

However, more impact factors may be detached to 
impact the new confirmed cases, which will be our 
further research points. First, public health intervention 
is an important factor in COVID-19 transmission. 
Second, our study only covered cities in the United 
States, further verification would be needed to other 
cities and regions. 
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