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Abstract 
Introduction: The ongoing COVID-19 pandemic has claimed hundreds of thousands of lives around the world. Health planners are seeking 
ways to forecast the evolution of the pandemic. In this study, a mathematical model was proposed for Saudi Arabia, the country with the highest 
reported number of COVID-19 cases in the Arab world. 
Methodology: The proposed model was adapted from the model used for the Middle East respiratory syndrome outbreak in South Korea. Using 
time-dependent parameters, the model incorporated the effects of both population-wide self-protective measures and government actions. Data 
before and after the government imposed control policies on 3 March 2020 were used to validate the model. Predictions for the disease’s 
progression were provided together with the evaluation of the effectiveness of the mitigation measures implemented by the government and 
self-protective measures taken by the population. 
Results: The model predicted that, if the government had continued to implement its strong control measures, then the scale of the pandemic 
would have decreased by 99% by the end of June 2020. Under the current relaxed policies, the model predicted that the scale of the pandemic 
will have decreased by 99% by 10 August 2020. The error between the model’s predictions and actual data was less than 6.5%. 
Conclusions: Although the proposed model did not capture all of the effects of human behaviors and government actions, it was validated as a 
result of its time-dependent parameters. The model’s accuracy indicates that it can be used by public health policymakers.  
 
Key words: COVID-19; coronavirus; model; Saudi Arabia; validation; prediction. 
 
J Infect Dev Ctries 2021; 15(7):918-924. doi:10.3855/jidc.13568 
 
(Received 28 July 2020 – Accepted 01 April 2021) 
 
Copyright © 2021 Ajbar et al. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 
 
Introduction 

The COVID-19 pandemic continues to spread 
around the world, threatening public health [1]. Saudi 
Arabia has reported the highest number of COVID-19 
cases in the Arab world [2]. The first case in the country 
was reported on 2 March 2020, after which it gradually 
spread, leading the government to impose a series of 
measures to control its spread on 23 March 2020. These 
measures included launching a multi-language 
awareness campaign calling for social distancing and 
personal hygiene. The government continued to impose 
more restrictions, culminating in bans on travel between 
cities, lockdowns, and school and workplace closures 
[3]. These measures targeted different parts of the 
country according to the level of the severity of 
infection. These actions, coupled with aggressive 
testing and the provision of adequate health services, 
may have reduced the number of infections and, more 
importantly, may have kept the fatality rate around 
1.5% from the first death due to COVID-19 on 24 
March 2020 until 15 April 2020. This rate was lower 

than the fatality rate of 5.2% in Europe and 3.7% in 
North America during the same period [4]. 

By the end of May 2020, the government had eased 
some restrictions, namely allowing approximately half 
of workers to return to work, allowing some travel 
between cities, and making mask-wearing compulsory. 
With the easing of restrictions, the number of new cases 
spiked and the number of intensive care unit 
hospitalizations increased. Uncertainty around the 
evolution of the COVID-19 pandemic was compounded 
by the fact that Saudi Arabia is home to a large number 
of expatriate workers. It is unclear whether 
governmental awareness programs effectively reached 
all of these workers and whether the population at large 
is abiding by the self-control measures imposed by the 
government given the economic hardship caused by the 
pandemic.  

The spread of infectious diseases is a very complex 
phenomenon that depends on a large number of factors. 
Some of them are social, environmental, or economic 
and are linked with human activities while other factors 
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are related to the nature of the pathogen causing the 
disease. Understanding these factors is necessary to 
develop an accurate predictive model. Research is 
currently being conducted on the pathogenesis, 
transmission, and life cycle of COVID-19. There are a 
few relevant points currently known about the virus. 
First, it causes respiratory, gastrointestinal, and 
neurological symptoms [5]. Second, it spreads via 
respiratory droplets and aerosols and surface contact 
[6]. Third, it has an incubation period of five to six days 
during which time infected individuals are typically 
asymptomatic. COVID-19’s asymptomatic 
transmission is an important topic, but whether 
transmissibility is the same when infected individuals 
are asymptomatic as when they are symptomatic is 
being debated [7]. Fourth, many factors are correlated 
with COVID-19 mortality, including age; gender; 
comorbidities, such as diabetes mellitus, hypertension, 
kidney disorders, and heart diseases; limited testing 
capacity; and healthcare quality [8]. 

Given the complexity of so many factors affecting 
COVID-19’s transmission and morbidity, simple 
mathematical models are often used to understand how 
it spreads. More complex models require a larger 
number of parameters that can be difficult to estimate, 
making their predictions unreliable. Thus, simpler 
compartmental models are often used to model the 
spread of infectious diseases. In these models, the 
population is divided into compartments with the 
assumption that every individual in the same 
compartment has the same characteristics [9]. These 
models usually take the form of generally deterministic 
differential equations. The susceptible-exposed-
infectious-removed (SEIR) model [9] is an extensively 
used compartmental epidemic model that divides the 
population in question into those who are susceptible to 
infection, have been exposed to the disease but are not 
yet infected, infectious, or have been removed from the 
population either because they recovered or died. This 
model has been used to model the spread of many 
viruses that infect humans, such as H1N1 [10], 
influenza [11], and Middle East respiratory syndrome 
(MERS)-CoV [12]. Despite its age, the SEIR model is 
flexible and is still being improved. It has also been 
applied extensively to analyze the COVID-19 pandemic 

[13–17]. 
A number of models have been used to predict the 

evolution of the COVID-19 pandemic in Saudi Arabia. 
Alharbi et al. [18] used COVID-19 data from 31 March 
2020 to 21 July 2020 to predict its spread using four 
epidemiological models. They showed that their 
proposed susceptible-infected-removed (SIR) model 

best fit the data and predicted that the cumulative 
number of cases would reach a mean of 359,794 
infected individuals and that the pandemic would end 
around 7 September 2020. Alrasheed et al. [19] 
proposed a network-based epidemic model to evaluate 
the effectiveness of the control measures implemented 
by the Saudi Arabian government and to predict the 
future dynamics of the disease in different scenarios. 
The proposed model predicted that, in the absence of 
vaccinations and social distancing beginning on 10 June 
2020, the epidemic would end at the beginning of 
November 2020 with over 13 million infected 
individuals. Alharthy et al. [20] utilized an SEIR model 
and predicted a peak infection incidence around 26 July 
2020, a peak mortality of 99,749 people, and around 14 
million infected individuals. Finally, Alshammari [21] 
utilized a highly structured model in which the Saudi 
Arabian population was divided into six categories: 
susceptible, exposed, symptomatic, asymptomatic, 
hospitalized, and recovered. The authors used data from 
2 March 2020 to 14 April 2020 to validate the model 
and make predictions. The model predicted that 
approximately 18% of the Saudi Arabian population 
would be asymptomatic by the last week of May 2020. 

In this study, an SEIR model is proposed for the 
spread of COVID-19 in Saudi Arabia that was based on 
a successful model for the spread of the MERS outbreak 
in South Korea in 2015 [22]. Both MERS-CoV and 
SARS-CoV-2 viruses present with similar symptoms, 
though SARS-CoV-2 is more contagious than MERS-
CoV, while MERS-CoV is deadlier than SARS-CoV-2.  

A note should be made about model validation. 
While COVID-19 pandemic modeling has been the 
subject of recent research, the challenge remains in 
fitting the proposed models to the available 
epidemiological data. Models that fit the data well can 
be used to accurately estimate the basic reproduction 
number which is not explicit in the raw epidemiological 
data. A number of techniques have been proposed to 
determine the best fit, including the least-squares 
method that minimizes the sum of the squared residuals 
[18,21,23] and the variational approach that is applied 
to SIR models, some of whose parameters are time-
dependent [24]. 

 
Methodology 

Two dynamic models were developed and validated 
to simulate the evolution of the pandemic. The first 
model reflected the uncontrolled spread of COVID-19 
from the time the first case was reported in Saudi Arabia 
on 2 March 2000 until 23 March 2000 when the 
government started implementing control measures. 
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This model’s parameters were extracted to obtain the 
reproduction number. The second model reflected 
government policies implemented beginning on 23 
March 2000 that were intended to limit the spread of the 
disease. Different techniques were used to fit the data 
and found that time-varying model parameters provided 
the best fit. Based on fitted model parameters, the 
second model was used to forecast the spread of the 
disease. Two scenarios that reflected differing levels of 
severity of government policies and population 
compliance were modeled. 

Daily infection, hospitalization, and recovery data 
were retrieved from the Saudi Ministry of Health. The 
models were integrated using MATLAB solver ode45 
that uses Runge-Kutta methods to solve initial value 
problems. Parameters were estimated using the built-in 
MATLAB function fmincon that uses sequential 
quadratic programming. The objective minimization 
function was the sum of the squared differences 
between the actual data and the predicted values. R2 
value were computed to quantify the model’s goodness 
of fit. 

 
Results 
Uncontrolled Model 

The uncontrolled model in this study was based on 
the work of Xia et al. [22] on modelling the outbreak of 
MERS. It assumed that the whole population in 
question was susceptible and that the disease only 
spread to individuals with no zoonotic infections. The 
model classified individuals as either susceptible; 
exposed; asymptomatic-infected; mildly symptomatic-
infected; hospitalized; or removed, which was defined 
as recovered or deceased. The uncontrolled model used 
in this study used the same assumptions of the model on 
which it was based, but did not include the 

asymptomatic category because doing so would require 
the inclusion of more parameters and, most importantly, 
would introduce a high degree of uncertainty to the 
model’s predictions because the number of 
asymptomatic individuals and their transmission rate 
during the COVID-19 pandemic were unknown.  

Figure 1 shows the structure of the current model: 
β1 represents the transmission coefficient of the 
symptomatic infected cases to the susceptible, β2 is the 
transmission coefficient of the hospitalized cases to the 
susceptible, 1/σ is the mean time of incubation period, 
1/λ is the mean time from symptoms onset to 
hospitalization, 1/κ is the mean duration for 
hospitalized cases for survivors and 1/μ is the mean 
duration from hospitalization to death. 

Based on the preceding assumptions and structure, 
the uncontrolled model was given by the following 
differential equations: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝛽𝛽1
𝑆𝑆𝑆𝑆
𝑁𝑁
− 𝛽𝛽2

𝑆𝑆𝑆𝑆
𝑁𝑁

    (1) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽1
𝑆𝑆𝑆𝑆
𝑁𝑁

+ 𝛽𝛽2
𝑆𝑆𝑆𝑆
𝑁𝑁
− 𝐸𝐸   (2) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐸𝐸 − 𝐼𝐼     (3) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐼𝐼 − 𝐻𝐻 − 𝐻𝐻    (4) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐻𝐻 + 𝐻𝐻     (5) 
The basic reproduction number associated with this 

model was derived as shown in Appendix A and is 
given by: 

𝑅𝑅0 = 𝛽𝛽1𝑆𝑆0
λ𝑁𝑁

+ 𝛽𝛽2𝑆𝑆0
(𝜅𝜅+𝜇𝜇)𝑁𝑁

    (6) 
where N is the total population of the country and is 

also the sum of all of the susceptible, exposed, infected, 
and hospitalized individuals and S0 is the initial number 
of susceptible individuals. Table 1 shows the list of 
model parameters that were either estimated based on 
the literature or that were extracted through fitting. The 

Figure 1. Strucure of the SEIR model [22]. 

Table 1. Summary of values of model parameters for the free case. 
Parameter Value (days) [26] Value (days) [25] This work 

1/σ 5.1 (estimated) 3 (estimated) 3 (fixed) 
1/λ 3.92 (fitted) 5 (estimated) 5 (fixed) 
1/κ 11.4 (estimated) -- 12.855 (fitted) 
1μ 59.52 (fitted) -- 1.334×1008 (fitted) 
β1 1.16 (fitted) [0.5944, 1.68] 0.950 (fitted) 
β2 1.16 (fitted) --- 9.611×10-11 (fitted) 
N 49,520,000 (Portugal) 14,000,000 (Wuhan, China) 34,813,871 (Saudi Arabia) 
S0 49519960 0.9*N 0.999*N 
E0 16~32 -- 0.001*N 
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mean latent period, 1/σ, and the mean infection period, 
1/λ, were intrinsic virus parameters [25]. κ and μ, β1, β2 

were obtained by fitting. Table 1 also provides the 
values of the model parameters from two other studies 
on the spread of COVID-19, one of which was 
conducted in Portugal [26] and the other of which was 
conducted in Wuhan, China [25]. 

Figure 2 shows the fitting results for the total 
number of cases and recovered individuals for the 
period from 2 March 2020, which is when the first case 
was reported, to 23 March 2020,  which was the day that 
the government began imposing control measures. Fit 
quality was quantified in terms of R2. The R2 for the 
cumulative number of infected individuals was 0.934 
(Figure 2a). The R2 for the number of recovered 
individuals was 0.940 (Figure 2b). Substituting the 
obtained parameters’ values into the expression of the 
basic reproduction number given by Eq. 6 yielded R0 = 
4.75 > 1, which indicates that the disease would have 
spread more quickly if insufficient control measures 
had been implemented. 

 
Controlled Model 

The uncontrolled model was augmented by 
incorporating the effect of governmental actions and 
self-imposed precautions taken by the population 
through the following parameters [22]: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑙𝑙1𝛽𝛽1
𝑆𝑆𝑆𝑆
𝑁𝑁
− 𝑙𝑙2𝛽𝛽2

𝑆𝑆𝑆𝑆
𝑁𝑁

   (7) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑙𝑙1𝛽𝛽1
𝑆𝑆𝑆𝑆
𝑁𝑁

+ 𝑙𝑙2𝛽𝛽2
𝑆𝑆𝑆𝑆
𝑁𝑁
− 𝐸𝐸 − 𝑑𝑑1𝐸𝐸  (8) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐸𝐸 − 𝐼𝐼 − 𝑑𝑑2𝐼𝐼    (9) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐼𝐼 − 𝐻𝐻 − 𝐻𝐻 − 𝑑𝑑3𝐻𝐻   (10) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐻𝐻 + 𝐻𝐻 + 𝑑𝑑1𝐸𝐸 + 𝑑𝑑2𝐼𝐼 + 𝑑𝑑3𝐻𝐻  (11) 
where l1 and l2 are the self-protection measures 

taken by symptomatic individuals and hospitalized 
individuals, respectively, that served as multiplication 
factors for the transmission parameters β1 and β2 and d1, 
d2, and d3 are governmental actions, namely requiring 
isolation and monitoring of, exposed, infected, and 
hospitalized individuals, respectively. l1, l2, d1, d2, and 
d3 were obtained by fitting the data from after 23 March 
2020, which is when the Saudi Arabian government 
implemented policies to limit the spread of COVID-19. 
We tried to use constant values for these parameters but 
the fit was unacceptable (Figure 3). Thus, R2 was 0.800 
and 0.886 for Figures 3a and 3b, respectively. The poor 
fit was likely due to the fact that the government’s 
actions changed over time and geography. Therefore, 
d1, d2, and d3 were defined as time-varying parameters 
following [24], who proposed a SIR model with time-
dependent infectivity and recovery rates and showed 
that their model better predicted the long-term 
evolution of the COVID-19 pandemic in several 
countries than static models. Each variable was 

Table 2. Optimal values of time varying model parameters for the controlled case. 
Parameter l1 l2 d1 d2 d3 

Value 9.358×10-01 8.270×10-01 8.043×10-14 
+1.082×10-14*t 

9.355×10-14 
+7.971×10-03*t 

2.440×10-13 
+7.099×10-15*t 

 

Figure 2. Results of fitting for the uncontrolled model. (a) 
Accumulated cases. (b) Recovered cases. 

Figure 3. Results of fitting for the controlled model using fixed 
parameters. (a) Accumulated cases. (b) Recovered cases. 
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assumed to follow the simple linear relationship di = di0 
+ di1t where i = 1, 2, 3. 

Figure 4 shows the fit results for the cumulative 
number of infected and recovered individuals using the 
time-varying parameters from Table 2. The fit of the 
time-varying model was better than the constant-
parameters model (Figure 3) as indicated by the time-
varying model’s R2 value of 0.920. 

Next, predictions were made on how the pandemic 
would evolve according to two scenarios (Table 3). In 
scenario 1, the government continued to impose strong 
mitigation policies until the end of April 2020 and the 
population mildly adhered to self-protection measures. 
This was a realistic scenario because the government 
continued to threaten to impose more severe policies 
after repealing them. Scenario 2 reflects reality in which 
the government relaxed its mitigation policies and the 
population mildly adhered to self-protection measures. 

Figure 5 shows the predictions for scenario 1, in 
which the total number of infected individuals would 
have reached a peak of 66,750 by 4 May 2020 and the 
pandemic would have decreased in intensity by 99% by 
the end of June 2020. Figure 6 shows the predictions for 
scenario 2, in which the total number of infected 
individuals was predicted to reach a peak of 270,877 by 

20 May 2020 and the pandemic would have decreased 
in intensity by 99% by 10 August 2020. 

 
  

Figure 4. Results of fitting for the controlled model using time 
varying parameters. (a) Accumulated cases. (b) Recovered 
cases. 

Figure 5. Results for scenario #1 (the whole population is 
susceptible with strong government actions and mild self-
protection measures). a) Daily cases; b) Accumulated cases. 

Table 3. Results of evolution of the pandemic for two scenarios. 

Scenario Peak Date Total accumulated 
Infected cases 

Estimated end date for the 
pandemics (less than 1% 

of new cases) 
Total population is susceptible and strong government 
actions  with mild self-protection measures. May 4 66,750 July 1 

Total population is susceptible and mild government 
actions and mild self-protection measures. May 20 270,877 August 10 

 

Figure 6. Results for scenario #2 (The whole population is 
susceptible with mild government actions and mild self-
protection measures). a) Daily cases; b) Accumulated cases. 
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Discussion 
The results of the study were strengthened by using 

a structured SEIR model that was successfully applied 
to understand the spread of MERS [22]. The model used 
in this study incorporated time-dependent parameters 
following [24] to produce more accurate long-term 
predictions about the evolution of the COVID-19 
pandemic. The proposed model was validated using 
open data through a rigorous optimization process. The 
model predicted that the 95% CI for the cumulative 
number of infected individuals would be 271,256 ± 702 
by 10 August 2020. Given that the actual figure was 
289,947, the prediction error was 6.5%. The next-best 
prediction was produced by [18] who predicted a 
cumulative number of 359,794 infected individuals by 
7 September 2020. Given that the actual figure was 
321,456, the prediction error was 10.7%. 

Our proposed model did not predict the number of 
recovered individuals well. The likely cause of this 
result is that recovery from disease is a complex process 
that depends on many factors that were not accounted 
for by the model, such as healthcare quality that could 
be measured by the hospital bed-population ratio, age 
of infected individuals, and comorbidities. 

A final note should be made that parameter 
estimation optimization is limited by the inverse 
problem in which no unique solutions and a large 
number of local optimum solutions can be found [27]. 
For this reason, it is important to reproduce data by 
relying on epidemiological information about 
parameter magnitudes. Moreover, in the inverse 
problem, model parameters are not continuously 
dependent on data. Therefore, small and unavoidable 
errors in the data may lead to large changes in the 
parameters. This was observed in our study to some 
degree for some of the fitted parameters. 

 
Conclusions 

Epidemiological models, such as the one proposed 
in this study, can be used to run simulations to 
understand the effects of government actions and 
general behaviors, such as social distancing and 
wearing masks, on the spread of infectious diseases. 
However, modeling human behavior during a pandemic 
is a challenging task. It is even more challenging for 
countries such as Saudi Arabia that are hosts to millions 
of foreign workers from different cultural backgrounds. 
The success of social distancing and self-protection 
measures require awareness campaigns that overcome 
cultural and linguistic barriers. Moreover, even 
structured epidemiological models, such as the one 
proposed in this study, cannot capture all of the factors 

that affect human behavior and the effects of 
government measures. However, the proposed model 
used time-dependent coefficients to make predictions 
about the cumulative number of infected individuals. 
The quality of the model’s predictions depended on 
how well it was validated using raw COVID-19 data. 
Epidemiological data is not generally designed for 
modeling [28]. Fitting becomes more challenging when 
models include more realistic divisions, such as those 
in the proposed model. A number of studies on COVID-
19 in Saudi Arabia showed that goodness of fit and 
model structure must be balanced. Simpler SIR models 
[18] make better predictions than complex, network-
based epidemiological models [19]. 
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Annex – Basic reproduction number, positivity and boundedness of the problem 
A.1 The Basic reproduction number R0 of system (Eqs. 1-5) 

The basic reproduction number is derived following the techniques presented in [29]. Only the infected 
compartments of the system (Eqs. 1-5) are considered: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽1
𝑆𝑆𝑆𝑆
𝑁𝑁

+ 𝛽𝛽2
𝑆𝑆𝑆𝑆
𝑁𝑁

− 𝐸𝐸 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐸𝐸 − 𝐼𝐼 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐼𝐼 − 𝐻𝐻 − 𝐻𝐻 

 
Let F denote the rate of appearance of new infections and V the rate of transfer of individuals out of compartments. 

These matrices are given by: 

𝐹𝐹 = �

𝛽𝛽1𝑆𝑆0𝐼𝐼
𝑁𝑁

+
𝛽𝛽2𝐻𝐻𝐻𝐻
𝑁𝑁

0
0

� ,𝑉𝑉 = �
𝜎𝜎𝜎𝜎

−𝜎𝜎𝜎𝜎 + 𝐼𝐼
−𝐼𝐼 + 𝜅𝜅𝜅𝜅 + 𝐻𝐻

� 

 
Let 𝐹𝐹 and 𝑉𝑉 be the derivative matrices of F and V with respect to x = (E, I, H), respectively. Substituting for initial 

data (S0, E0, I0, H0) yields: 

𝐹𝐹 = �
0

𝛽𝛽1𝑆𝑆0
𝑁𝑁

𝛽𝛽2𝑆𝑆0
𝑁𝑁

0 0 0
0 0 0

� ,𝑉𝑉 = �
𝜎𝜎 0 0
−𝜎𝜎 λ 0
0 −λ 𝜅𝜅 + 𝜇𝜇

� 

 
R0 is the biggest eigenvalue of matrix 𝐹𝐹𝑉𝑉

−1
 i.e. 𝑅𝑅0 = 𝜌𝜌(𝐹𝐹𝑉𝑉

−1
)  

Algebraic manipulations yield: 

𝑅𝑅0 =
𝛽𝛽1𝑆𝑆0
λ𝑁𝑁

+
𝛽𝛽2𝑆𝑆0

(𝜅𝜅 + 𝜇𝜇)𝑁𝑁
 

 
A.2 Positivity and boundedness of solutions 

In the following, the proposed model is proved to be well-posed by showing that it satisfies the positivity and 
boundedness conditions. First, it is shown that the model solutions are always positive for non-negative initial 
conditions. Equation 1 can be written as 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑆𝑆 �
𝛽𝛽1𝐼𝐼
𝑁𝑁

+
𝛽𝛽2𝐻𝐻
𝑁𝑁

� 

Let 

𝑦𝑦 =
𝛽𝛽1𝐼𝐼
𝑁𝑁

+
𝛽𝛽2𝐻𝐻
𝑁𝑁

 

Integration yields,  
𝑆𝑆(𝑡𝑡) = 𝑆𝑆0𝑒𝑒−∫ 𝑦𝑦(𝜏𝜏)𝑑𝑑𝑑𝑑𝑡𝑡

0 > 0 

This implies that S(t) is positive for all t. 
Equation 2 yields 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≥ −𝐸𝐸, 

 which after integrating yields 
𝐸𝐸(𝑡𝑡) = 𝐸𝐸0𝑒𝑒−∫ 𝜎𝜎𝜎𝜎𝜎𝜎𝑡𝑡

0 > 0 
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The same analysis can be carried out for the rest of variables: I, H and R. 
As for the boundedness of solutions, let V(t) = S(t) + E (t) + I(t)+ H(t)+R(t). Adding Equations (1-5) yields: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0, 
which yields V(t)=N for all t > 0 since V(0)=N. 
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