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Abstract 
Introduction: The bacteria Acinetobacter spp. are extremely relevant in clinical settings. Recently, they have emerged as potential food-borne 
opportunistic pathogens. Their ability to form biofilms contributes to antibiotic resistance by generating an environment that facilitates the 
acquisition and transfer of resistance genes. Studies on the tolerance of Acinetobacter spp. from food sources to sanitizers used in the food 
industry and homes are necessary to help mitigate food contamination by these microorganisms. 
Methodology: Isolates from ready-to-eat salads (n = 11) and raw goat milk (n = 4) were evaluated for their tolerance to sodium hypochlorite 
(NaClO), quaternary ammonium compound/biguanide (QAC/BG), and peracetic acid (PAA). The Food and Drug Administration (FDA) 
recommends that the concentration of these sanitizers in food-processing equipment and utensils and other food-contact articles should not 
exceed 200 parts per million (ppm). 
Results: The minimum inhibitory (MIC) and bactericidal (MBC) concentrations of NaClO were above 312.5 ppm for all isolates tested and ≥ 
2,500 ppm for four isolates from salads. Only three isolates from salads and four isolates from goat milk were inhibited by an MIC lower than 
200 ppm of PAA. QAC/BG presented the lowest MIC and MCB values (9.37/6.25  ppm for all isolates tested), suggesting that it is the most 
effective agent against the isolates used in this study. 
Conclusions: Our results demonstrate that Acinetobacter spp. isolates from food can be tolerant to the recommended concentrations of NaClO 
and PAA, which highlights the health risks to consumers. 
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Introduction 

Lifestyle changes have resulted in some foods 
becoming very popular because they are fresh, healthy, 
practical, and without additives. Among these are 
ready-to-eat, fresh, raw, and minimally processed 
foods. However, these healthy products may have some 
hidden dangers. 

Fresh foods can be considered high-risk from a 
microbiological point of view, since they can be 
consumed directly without undergoing any microbial 
inactivation processes. This has already been observed 
with the increase in disease outbreaks associated with 
the consumption of these foods [1,2]. Fresh and raw 
products, such as milk, or minimally processed 
products, such as ready-to-eat salads, can be sources of 
Acinetobacter spp. 

Acinetobacter baumannii is a pathogen classified as 
an urgent threat by the Centers for Disease Control and 
Prevention (CDC), mainly because of its resistance to 
several antibiotics [3]. Most A. baumannii infections 

are caused by strains resistant to multiple antibiotics 
(MDR, "multidrug-resistant"); this makes them difficult 
to treat and often results in hospital outbreaks. More 
importantly, A. baumannii is able to survive in different 
environments and adverse conditions, including long 
periods on surfaces [4]. Therefore, it is important to 
adequately decontaminate surfaces to prevent the 
spread of these bacteria.  

Acinetobacter spp. are not only a concern in clinical 
settings. The presence of these bacteria in industries and 
other environments that produce or process food are a 
concern because pathogenic strains resistant to multiple 
antibiotics have been isolated from different food 
samples. Some studies have shown that food can act as 
a vector for the transmission of these bacteria to 
consumers [5-10]. 

Sanitizing agents are used in hospitals and 
industries involved with food production, preparation, 
and distribution [11]. However, some A. baumannii 
isolates are resistant to some of these agents, further 
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contributing to their ability to survive on surfaces and 
spread via food [4]. It is noteworthy that the capacity of 
bacteria to form a biofilm further increases their 
resistance to sanitizing agents; therefore, Acinetobacter 
spp. strains that form biofilms are often multidrug-
resistant [12]. 

The efficiency of sanitizers used for the elimination 
of these microorganisms in the food industry and 
domestically, needs to be validated to ensure that these 
agents, at their recommended concentrations, are 
effective against Acinetobacter spp. strains. Several 
studies have evaluated the tolerance of Acinetobacter 
spp. isolates of clinical origin to sanitizers [13-16]. 
These studies revealed an association between clinical 
isolates with reduced susceptibility to sanitizers, such 
as sodium hypochlorite (NaClO), chlorhexidine, and 
peracetic acid (PAA), and the formation of biofilms. 

Clinical isolates are typically more tolerant to 
sanitizers than environmental isolates; however, there 
are no specific studies on foodborne Acinetobacter spp., 
especially those isolated from fresh foods such as raw 
milk and salads. 

In this study, the tolerance of Acinetobacter spp. 
isolates from raw goat milk and ready-to-eat salads was 
evaluated against NaClO, PAA, and quaternary 
ammonium compounds (QACs), which are generally 
used for cleaning food preparation areas. 

 
Methodology 
Acinetobacter spp. isolates 

Acinetobacter spp. were isolated from raw goat 
milk products and ready-to-eat salads and identified by 
matrix assisted laser desorption ionization time of flight 
(MALDI-TOF) mass spectrometry in previous studies 

performed at the Instituto Federal do Rio de Janeiro 
(IFRJ) [17] and Universidade Federal Fluminense 
(UFF) [18] (Table 1). The isolates were activated from 
stocks stored at -20 °C by inoculation onto Casoy agar 
(Soybean-Casein digest agar, Himedia, São Paulo, 
Brazil) plates. The cultures were incubated at 37 °C for 
18–24 h. 

 
Characterization of the isolates 

The initial characterization of the isolates is 
presented in Table 1. A qualitative assessment of 
biofilm production and multidrug resistance (MDR) of 
the isolates was performed. 

Biofilm production was evaluated by inoculating 
the isolates into Congo Red agar (nutrient agar plus 0.8 
g/L Congo red and 36 g/L sucrose) plates as described 
by Freeman et al. [19]. The cultures were incubated at 
37 °C for 24 h. Biofilm-producing isolates appeared as 
black colonies, whereas non-producing isolates were 
depigmented or reddish. Salmonella enterica 
(ATCC14028) was used as a positive control. 

Isolates were cultured on CHROMagar™ 
Acinetobacter MDR culture medium, a selective and 
differential chromogenic medium, to detect MDR [20]. 
The cultures were incubated at 37 °C for 18–24 h. MDR 
Acinetobacter spp. colonies were colored red. Other 
bacteria (including non-MDR Acinetobacter spp. 
isolates) were either inhibited or presented as light blue 
colonies. 

 
Determination of the minimum inhibitory concentration 
(MIC) 

The minimum inhibitory concentrations (MIC) of 
NaClO, PAA, and QAC/biguanide (QAC/BG) were 

Table 1. Isolates of Acinetobacter spp. used in this work. 

Origin Isolates Identification Characteristics previously 
studied * 

Biofilm 
production 

MDR phenotype 
expression 

Ready-to-
eat salads 

F4R15/7 Acinetobacter nosocomialis ND - + 
F3R18/7 Acinetobacter baumannii ND - + 
F4R15/6 Acinetobacter nosocomialis CAZR, SUTR - + 
F5R14/3 Acinetobacter gerneri ND + + 
F3R12/7 Acinetobacter nosocomialis ND - + 
F1R13/7 Acinetobacter nosocomialis ND - + 
F3R13/1 Acinetobacter baumannii ND - + 
F1R13/6 Acinetobacter baumannii ND - + 
F2R21 Acinetobacter baumannii ND + + 

F2R13/7 Acinetobacter baumannii ND - + 
F4R15/3 Acinetobacter nosocomialis CAZR, MINR, SUTR (MDR) - + 

Raw goat’s 
milk 

1708 Acinetobacter guillauiae KPC+, ESBL+ - + 
2017 Acinetobacter ursingii KPC+, ESBL+ - + 
2008 Acinetobacter ursingii ESBL+ - + 
1715 Acinetobacter guillauiae KPC+, ESBL+ - + 

* Characteristics previously studied by Beltrão [18] (isolates from ready-to-eat salads) and by Ramos, Nascimento [17] (isolates from raw goat’s milk); R: 
resistance; MDR: multidrug resistance; CAZ: ceftazidime; MIN: minocycline; SUT: sulfamethoxazole/trimethoprim; ESBL+: extended-spectrum beta-lactamase 
producer; KPC+: Klebsiella pneumoniae carbapenemase producer; ND: not determined. 
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determined using the broth microdilution method in 96-
well polystyrene microtiter plates, as described by Obe 
et al. [21], with minor alterations. Colonies of each 
Acinetobacter spp. isolate were inoculated in 10 mL of 
0.85% (w/v) saline solution until the turbidity was 
equivalent to McFarland's 0.5 scale (approximately 1.5 
× 108 CFU/mL). Sanitizer (200 µL) was added to the 
first well of the microtiter plates, and 100 µL of tryptic 
soy broth (TSB, Himedia, São Paulo, Brazil) was added 
to the remaining wells in the same row. The sanitizer 
was diluted by transferring 100 µL from the first to the 
last well. Then, 100 µL of the inoculum prepared with 
the bacterial isolates was added to each well, resulting 
in a final volume of 200 µL and a concentration of 
approximately 106 CFU in each well (confirmed by 
plating). The final concentration of sanitizers in the 
wells was 19.5–10,000 ppm for NaClO (CLORO RIO, 
Rioquímica, São Paulo Brazil), 1.9–1,000 ppm for PAA 
(PERAX RIO, Rioquímica, São Paulo, Brazil), and 
1.17/0.78–150/100 ppm for QAC/BG (SEPTPRO, 
Prolink. São Paulo, Brazil). The QAC/BG was 
composed of a mixture of cationic surfactants (dimethyl 
ammonium didecyl chloride and benzalkonium 
chloride) and polyhexamethylene biguanide chloride. 
Positive control wells included 100 µL of broth and 100 
µL of bacterial inoculum, and negative control wells 
included 200 µL of TSB broth added before incubation 
of the plate at 37 °C for 24 h. Bacterial growth was 
visually determined based on turbidity. The MIC was 
determined as the lowest concentration of the sanitizer 
that inhibited the growth of each Acinetobacter spp. 
isolate. The experiment was repeated thrice for each 
isolate. 

 

Determination of the minimum bactericidal 
concentration (MBC) 

The MBC was determined as described by Haubert 
et al. [22]. MBC was evaluated from wells without 
visible bacterial growth, as obtained in the previous 
experiment. Aliquots of 100 µL were cultured on tryptic 
soy agar (TSA, Himedia, São Paulo, Brazil) plates and 
incubated at 37 °C for 24 h. After incubation, colonies 
were counted. MBC was defined as the lowest 
concentration of sanitizer at which 99.9% of the cells 
were killed. Three independent experiments were 
conducted for each isolate. 

 
Results 

In this study, the tolerance of Acinetobacter spp. 
isolated from raw goat milk and ready-to-eat salads to 
NaClO, PAA, and QAC/BG was evaluated. Isolates 
used in this study were characterized before use by 
evaluating the production of biofilms and expression of 
the MDR phenotype. 

Two (13.3%) of the 15 isolates, F5R14/3 and 
F2R21, included in this study were identified as A. 
gerneri and A baumannii. Both of these isolates were 
obtained from ready-to-eat salads and produced 
biofilms on Congo red agar (Table 1).  

The characterization of the isolate antibiotic 
resistance in previous studies was performed using an 
antibiogram, which may not reveal an MDR phenotype. 
All 15 isolates used in this study exhibited an MDR 
phenotype on CHROMagar Acinetobacter MDR-
chromogenic agar (Plastlabor, Rio de Janeiro, Brazil) 
(Table 1). 

Table 2. Minimum inhibitory and bactericidal concentration of sanitizers against Acinetobacter spp. studied in this work.  

Identification Origin Isolate 
MIC and MBC of the sanitizer agents in ppm 

NaClO PAA QAC/BG 
MIC MBC MIC MBC MIC MBC 

Acinetobacter 
baumannii 

S F3R18/7 1,250 1,250 500 500 9.37/6.25 9.37/6.25 
S F3R13/1 ≥ 2,500 ≥ 2,500 125 125 9.37/6.25 9.37/6.25 
S F1R13/6 1,250 ≥ 2,500 250 250 9.37/6.25 9.37/6.25 
S F2R21 ≥ 2,500 ≥ 2,500 125 250 9.37/6.25 9.37/6.25 
S F2R13/7 625 1,250 250 250 9.37/6.25 9.37/6.25 

Acinetobacter 
nosocomialis 

S F4R15/7 1,250 1,250 500 500 9.37/6.25 9.37/6.25 
S F4R15/6 1,250 1,250 250 250 9.37/6.25 9.37/6.25 
S F3R12/7 1,250 1,250 250 250 9.37/6.25 9.37/6.25 
S F4R15/3 ≥ 2,500 ≥ 2,500 500 500 9.37/6.25 9.37/6.25 
S F1R13/7 ≥ 2,500 ≥ 2,500 125 125 9.37/6.25 9.37/6.25 

Acinetobacter gerneri S F5R14/3 312.5 312.5 500 500 9.37/6.25 9.37/6.25 
Acinetobacter 

guillauiae 
M 1708 625 625 31.2 31.2 9.37/6.25 9.37/6.25 
M 1715 312.5 312.5 62.5 62.5 9.37/6.25 9.37/6.25 

Acinetobacter ursingii M 2017 625 625 62.5 62.5 9.37/6.25 9.37/6.25 
M 2008 312.5 312.5 31.2 31.2 9.37/6.25 9.37/6.25 

NaClO: sodium hypochlorite; PAA: peracetic acid; QAC/BG: quaternary ammonium compound and biguanide; S: isolates from salad samples; M: isolates from 
goat milk samples; MIC: minimum inhibitory concentration; MBC: minimum bactericidal concentration; ppm: parts per million. 
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The MIC and MBC values of NaClO against 
Acinetobacter spp. were 312.5 and ≥ 2,500 ppm, 
respectively. Isolates identified as A. baumannii and A. 
nosocomialis exhibited values higher than 1,250 ppm 
(Table 2). Only one isolate (F5R14/3, a biofilm 
producer) had a slightly lower NaClO MIC (312.5 
ppm). The isolates F1R13/7, F3R13/1, F2R21, and 
F4R15/3 had high NaClO tolerance and were recovered 
from ready-to-eat salads.  

The MIC of eight (71.7%) of the 11 isolates from 
ready-to-eat salads to PAA was ≥ 250 ppm (Table 2). 
The MIC and MBC of the raw milk isolates were 
between 31.2–62.5 ppm. The MIC and MBC values to 
QAC/BG were the same for all isolates tested 
(9.37/6.25 ppm) (Table 2). 

 
Discussion 

The isolates studied in this work were characterized 
for the production of biofilm and for the expression of 
the MDR phenotype prior to evaluation of tolerance to 
sanitizers. Biofilms are communities of 
microorganisms attached to a biotic or abiotic surface 
surrounded by an extracellular polymeric matrix. The 
production of biofilms contributes to the adhesion, 
colonization, and infection capacity of Acinetobacter 
spp. [23,24]. 

The four isolates from raw goat milk had already 
been tested for biofilm production in a previous study 
[17], and these results were confirmed in this study. 
Only two isolates from ready-to-eat salads were biofilm 
producers, despite this being previously described for 
Acinetobacter spp. from food [25]. Recently, one study 
reported that all isolates (n = 17) of Acinetobacter spp. 
derived from fresh vegetables and fruits were able to 
produce biofilms [26]. However, our results differ from 
the above findings, as a low frequency of isolates 
produced biofilms (13.3%). The ability of isolates to 
produce biofilms was further confirmed by amplifying 
genes associated with biofilm production by 
polymerase chain reaction (PCR). 

Some studies have reported that the prevalence of 
antibiotic resistance in biofilms is higher than that in 
planktonic (free) cells, and that biofilm formation is 
more strongly associated with MDR isolates than 
susceptible isolates [27-29]. Biofilm-forming isolates 
can spread in food preparation environments and form 
biofilms on the surfaces of these facilities, making them 
a persistent source of food contamination. Additionally, 
biofilm production contributes to antibiotic resistance 
in Acinetobacter spp. by forming an environment that 
facilitates the acquisition and transfer of resistance 
genes [9]. 

All food isolates used in this study presented an 
MDR phenotype on CHROMagar Acinetobacter MDR 
chromogenic agar. This phenotype has been observed 
in Acinetobacter spp. isolated from different foods. In a 
previous study, 17 strains of the Acinetobacter 
baumannii-calcoaceticus complex (ABC complex) 
isolated from infant formula were characterized, 14 
(82.3%) of which displayed MDR [5]. Another study 
identified 166 Acinetobacter spp. isolates by genetic 
sequencing of meat products [30]. A recent study 
detected four A. baumannii isolates from fresh fruits 
and vegetables (red apple, green grape, guava, and red 
radish) that were resistant to 16 antibiotics, including 
carbapenems, and were classified as extensively drug-
resistant (XDR) [26]. 

The threat of MDR bacteria does not consist only of 
the difficulty of treating patients, but also of the risk of 
transfer of resistance genes to other bacteria [31]. The 
authors verified that the co-cultivation of Acinetobacter 
baylyi and Escherichia coli in lettuce enabled the 
transfer of resistance genes from A. baylyi to E. coli. 
These bacteria were then able to colonize the intestines 
of mice and promote the in vivo transfer of resistance 
genes to Klebsiella pneumoniae. Based on this, the 
results of our study are concerning, since the 15 isolates 
studied showed an MDR phenotype, increasing the risk 
of transferring resistance genes to other bacteria present 
in foods. 

Bacterial growth in food production environments 
can be controlled using sanitizers. However, the 
tolerance of Acinetobacter spp. against these substances 
has been studied over the years, with greater emphasis 
on clinical isolates. Studies have shown that these 
bacteria of hospital origin generally tolerate different 
concentrations of NaClO and other sanitizers 
commonly used in hospital environments, such as 
antiseptic soaps [32-34]. However, few studies have 
reported the tolerance of Acinetobacter spp. isolates 
from food and food preparation surfaces to sanitizers. 

In our study, the MIC and MBC values of NaClO 
against Acinetobacter spp. were between 312.5 and ≥ 
2,500 ppm. Isolate F5R14/3 was the only isolate that 
presented a slightly lower MIC for NaClO, which is still 
above the recommended concentration by the FDA (up 
to 200 ppm) [35] for use in equipment and food 
processing utensils and other food contact articles for 
human consumption. 

Some studies have suggested that the presence of 
organic matter in food-processing environments can 
reduce the effectiveness of antimicrobial agents, 
resulting in pathogens being exposed to sublethal 
concentrations of these agents [21,36,37]. In our study, 
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all the isolates with high chlorine tolerance (F1R13/7, 
F3R13/1, F2R21, and F4R15/3) were recovered from 
ready-to-eat salads in which chlorine is often used to 
disinfect vegetables. 

If isolates are exposed to subinhibitory levels of 
chlorine due to the presence of organic matter or its 
inadequate application, this may contribute to a greater 
tolerance developing in these isolates against the agent. 
This has been observed in isolates of Salmonella 
enterica serotypes Typhimurium and Heidelberg, 
which developed chlorine tolerance after repeated 
exposure to sublethal concentrations of this agent 
[38,39]. Furthermore, Gadea et al. reported that 
exposure of Gram-negative and Gram-positive strains 
isolated from food to biocides results in a transient 
decrease in susceptibility to antimicrobial agents, such 
as sanitizers and antibiotics [40,41]. 

PAA is commonly used as a substitute for chlorine-
based compounds in disinfection processes and has 
been approved by the FDA for use in the food industry 
[35,42]. The risk of developing tolerance or resistance 
to this agent is considered to be very low because of the 
low specificity of PAA reactions. This agent works by 
denaturing proteins, breaking the permeability of the 
cell wall, and oxidizing sulfhydryl and sulfur bonds in 
proteins, enzymes, and other metabolites. It also 
induces the formation and accumulation of hydroxyl 
radicals in the bacterial cell, which are lethal [43,44]. 

Our results showed that in the case of PAA, the MIC 
and MBC values of the raw goat milk isolates were 
lower than those of isolates from salads, and were 
below the concentration recommended by the FDA (> 
100 ppm and < 200 ppm). However, the MIC for eight 
(71.7%) of the 11 isolates from ready-to-eat salads was 
greater than or equal to 250 ppm. 

QACs are disinfectants and antiseptics that are 
widely used in agricultural facilities, healthcare, food 
industry, and homes [45]. The QACs used in this work 
were composed of a mixture of 
didecyldimethylammonium chloride, alkyl dimethyl 
benzyl ammonium chloride (benzalkonium chloride), 
and biguanide. The isolates' tolerance to QAC/BG was 
the same for all isolates, with MIC and MBC values of 
9.37/6.25 ppm (Table 2). Among the three sanitizers 
tested, QAC/BG had the lowest MIC and MCB values, 
suggesting that it was the most effective agent against 
the isolates used in this study. Additionally, according 
to the FDA [35], the maximum concentration of these 
agents on food-processing surfaces and utensils should 
not exceed 200 ppm. 

Despite their effectiveness in this and other studies, 
Kampf [46] suggested that QACs, such as 

benzalkonium chloride, are not the most suitable 
biocidal agent for disinfection procedures because of 
the strong adaptive response developed by some 
bacteria, causing cross-resistance to other sanitizers and 
antibiotics. 

Understanding the effective concentration of a 
sanitizing agent can prevent the spread of bacteria 
through food and their permanence on surfaces through 
biofilms. Thus, outbreaks such as the one described in 
a hospital environment, where inadequate 
concentrations of NaClO (800 ppm) used for 
disinfection resulted in the spread of imipenem-
resistant A. baumannii (IRAB) in the intensive care unit 
can be avoided. Only 5,000 ppm NaClO was able to 
control and eradicate the IRAB outbreak [33]. 

 
Conclusions 

Efficient disinfection procedures are key to the 
prevention and elimination of pathogens in agricultural 
facilities, health care, food industry, and homes. Our 
results demonstrated that even Acinetobacter spp. 
isolates from food can be tolerant to the recommended 
concentrations of NaClO and PAA, which are widely 
used in the food industry and homes. Fresh food 
farmers, distributors, and retailers must ensure that 
these foods meet food safety requirements to prevent 
the transmission of Acinetobacter spp. and classic food 
pathogens to consumers. Ababneh et al. [26] also point 
out that consumers must also do their part to protect 
themselves from this type of contamination by ensuring 
that their fresh food is washed and cooked properly 
before being consumed. As pointed out by Lee et al., 
the correct application of tools such as the standard 
sanitation operating procedure and hazard analysis of 
critical control points is necessary [47]. These tools, 
together with the complete and periodic inspection of 
equipment and utensils, are fundamental to the 
prevention of biofilm formation in food processing 
environments. 
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